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ECE 659  PRACTICE EXAM IV 
Actual Exam IV 

Friday, Apr.11, 2014 330-420PM, FRNY B124 
 

CLOSED BOOK  
One page of notes provided, please see last page 

Actual Exam will have five questions. 
 

The following questions have been chosen to stress 
what I consider the most important concepts / skills 

 that you should be clear on. 
 

 
4.1.	   NEGF	  for	  device	  with	  one	  spin	  degenerate	  level	  
4.2.	   Transforming	  contacts	  
4.3.	   Function	  of	  a	  matrix	  
4.4.	   Interpreting	  Gn	  
4.5.	   Interpreting	  Gn	  
4.6.	   Vector	  potential	  in	  Schrodinger	  equation	  
4.7.	   Pauli	  equation	  
4.8.	   Rashba	  Hamiltonian	  
4.9.	   Energy	  dispersion	  and	  eigenspinors	  of	  Rashba	  Hamiltonian	  
4.10.	   Spin	  Precession**	  

 
** It may be instructive to try out MATLAB-based numerical examples, 
please see “MATLAB-based homework” posted on website. 

 
Text:   Lecture 14, 22, 24.1-24.2, LNE 
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4.1. A channel with two levels connected to four contacts is described by 
 

	  	  	  	  	  	  	  	  	  

H =
ε 0

0 ε

⎡

⎣
⎢

⎤

⎦
⎥

	  	  	  	  	  	  	  	  	  

Σ1 = − i
2
γ 1 I + P1


σ . n̂1( )

	   	  

Σ1 = − i
2
γ 1 I − P1


σ . n̂1( )

	      Σ2 = − i
2
γ 2 I + P2


σ . n̂2( )

	   	  

Σ2 = − i
2
γ 2 I − P2


σ . n̂2( )

	  
	  
Calculate the transmission

 

T21 = Trace[Γ2G
RΓ1G

A ]

 
  
Solution: 
 
Γ1 = i[Σ1 − Σ1

+ ] = γ 1 I + P1

σ . n̂1( )  

Γ2 = i[Σ2 − Σ2
+ ] = γ 2 I + P2


σ . n̂2( )  

 

[GR ] −1 = EI − ε I + iγ 1I + iγ 2I → [GR ] = 1
E − ε + iγ 1 + iγ 2

[I ]  

T21 = Trace[Γ2G
RΓ1G

A ]  
 

= γ 1γ 2
(E − ε )2 + (γ 1 + γ 2 )

2 Trace[I + P1

σ . n̂1][I + P2


σ . n̂2 ]  

          

= γ 1γ 2
(E − ε )2 + (γ 1 + γ 2 )

2 Trace[I + P1

σ . n̂1 + P2


σ . n̂2 + P1P2 (


σ . n̂1) (


σ . n̂2 )]  

 

= γ 1γ 2
(E − ε )2 + (γ 1 + γ 2 )

2 Trace[I + P1

σ . n̂1 + P2


σ . n̂2 + P1P2 n̂1. n̂2 + iP1P2


σ .(n̂1 × n̂2 )]  

 

= 2γ 1γ 2
(E − ε )2 + (γ 1 + γ 2 )

2 (1+ P1P2 n̂1. n̂2 )  
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4.2. A contact pointing along +z is described by Γ =
α 0

0 β
⎡

⎣
⎢

⎤

⎦
⎥  . 

What is the Γ  for an identical contact pointing along +x ? 
 
 
Solution: 
 

Given: Γ =
α 0
0 β
⎡

⎣
⎢

⎤

⎦
⎥ =

α + β
2

[I ] + α − β
2

[σ z ]  

 
 
If contact points along x 
 

 Γ = α + β
2

[I ] + α − β
2

[σ x ]  

 

  = 1
2

α + β α − β
α − β α + β
⎡

⎣
⎢

⎤

⎦
⎥  

 
 
Can obtain this result directly through basis transformation as well. 
 

 Γ = 1
2
1 1
1 −1
⎡

⎣
⎢

⎤

⎦
⎥

α 0
0 β
⎡

⎣
⎢

⎤

⎦
⎥
1 1
1 −1
⎡

⎣
⎢

⎤

⎦
⎥  

 

= 1
2
1 1
1 −1
⎡

⎣
⎢

⎤

⎦
⎥

α α
β − β
⎡

⎣
⎢

⎤

⎦
⎥  

 

 = 1
2

α + β α − β
α − β α + β
⎡

⎣
⎢

⎤

⎦
⎥   
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4.3. Evaluate the matrix exp iασ y⎡⎣ ⎤⎦ . 
 
Solution: 
 
If we use  ± y as our basis, exp iασ y⎡⎣ ⎤⎦  

will be given by  
 

 exp iα
1 0
0 −1
⎡

⎣
⎢

⎤

⎦
⎥ =

eiα 0

0 e−iα
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
Transforming from ± y to  ± z , 
 

 exp[iασ y ] =
1
2
1 i
i 1
⎡

⎣
⎢

⎤

⎦
⎥

eiα 0

0 e−iα
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 − i
−i 1
⎡

⎣
⎢

⎤

⎦
⎥  

 

  = 1
2
1 i
i 1
⎡

⎣
⎢

⎤

⎦
⎥

eiα − ieiα

−ie−iα e−iα
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 =
cosα sinα
−sinα cosα
⎡

⎣
⎢

⎤

⎦
⎥  
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4.4. An electron has a spinor wavefunction given by 1
14

−1i
2 + 3i

⎧
⎨
⎩

⎫
⎬
⎭

 

What are the x, y and z components of its spin  

S . 

 
 
Solution: 
 

 ψψ + = 1
14

−1i
2 + 3i

⎧
⎨
⎩

⎫
⎬
⎭
1i 2 − 3i{ }  

 

  = 1
14

1 − 3− 2i
−3+ 2i 13
⎡

⎣
⎢

⎤

⎦
⎥  

 
Compare 
 

Gn

2π
= 1

2

N + Sz Sx − iSy
Sx + iSy N − Sz

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

 
 

Clearly, N + Sz =
1
7
, N − Sz =

13
7

→ N = 1, Sz = − 6
7  

 

Sx = − 3
7
, Sy =

2
7

 

 
(Can do this more formally by taking traces too) 

 
 

 


S = − 3

7
x̂ + 2

7
ŷ − 6

7
ẑ  
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4.5. At a point in a channel the correlation matrix [Gn] is given by 

 (e) G
n

2π
=

50 + i10
− i10 50
⎡

⎣
⎢

⎤

⎦
⎥  

 
(a) What is the number of electrons ? 
(b) What is the number of spins and in what direction do they point ? 

 
 
Solution: 
 

 Gn

2π
= 1

2

N + Sz Sx − iSy
Sx + iSy N − Sz

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
Clearly, N + Sz = 100 = N − Sz → N = 100 , Sz = 0  

Sx = 0 , Sy = −20  
 
More formally we can multiply by Pauli matrices and take traces. 
 

N = Trace
50 + i10
−i10 50
⎡

⎣
⎢

⎤

⎦
⎥ = 100  

 

 
Sx = Trace

50 + i10
−i10 50
⎡

⎣
⎢

⎤

⎦
⎥
0 1
1 0
⎡

⎣
⎢

⎤

⎦
⎥ = Trace

+i10 
… − i10
⎡

⎣
⎢

⎤

⎦
⎥ = 0  

 

 
Sy = Trace

50 + i10
−i10 50
⎡

⎣
⎢

⎤

⎦
⎥
0 − i
i 0
⎡

⎣
⎢

⎤

⎦
⎥ = Trace

−10 
… −10
⎡

⎣
⎢

⎤

⎦
⎥ = −20  

 

 
Sz = Trace

50 + i10
−i10 50
⎡

⎣
⎢

⎤

⎦
⎥
1 0
0 −1
⎡

⎣
⎢

⎤

⎦
⎥ = Trace

50 
… − 50
⎡

⎣
⎢

⎤

⎦
⎥ = 0  

 
 
100 electrons with net spin of 20 pointing along negative y. 
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4.6. The energy in a magnetic field is written in the form (A is the vector potential) 

 
E(x, p) =

j
∑

(pj + qAj (
x))2

2m
+U(x)

 
Starting from the semiclassical equations of motion 

 
d

x

dt
=



∇pE
  

d p

dt
= −



∇E
 

show that  

   

d x
dt

=
p + q


A(x)
m

≡
p '
m  

   

dp '
dt

= −q(

F + v x


B)

 
where 

 
q

F =

∇U and


B =

∇×

A

  
SOLUTION: 

 E(x, p) =
j
∑

(pj + qAj (
x))2

2m
+U(x)  

	   → vi ≡
dxi
dt

= pi + qAi(
x)

m
, 	   → v =

p + q

A(x)
m

, 	  

	   	  

	  
→ d pi

dt
= − ∂U

∂ xi
− q vj

j
∑

∂Aj
∂ xi

	  

	  	  	  	   	   	  	   d
dt
(pi + qAi(

x)) = − ∂U
∂ xi

− q vj
j
∑

∂Aj
∂ xi

− ∂Ai
∂ x j

⎛

⎝
⎜

⎞

⎠
⎟ 	  	  

	  	  = − ∂U
∂ xi

− q vj
j,n
∑ εijn


∇ x

A( )n 	  

	   	  → d( p + q

A)

dt
= − q(


F + v x


B) 	   where	   q


F =

∇U 	  and

  

� 

 
B =

 
∇ x
 
A 	  
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4.7. The Pauli equation for electrons in a magnetic field is written as (assuming U=0 for 
simplicity) 

    
E ψ{ } = [ σ .( p + q


A)]2

2m
ψ{ }

  
where the wavefunction ψ{ }  is a (2x1) spinor. 

Show that this equation can be rewritten in the form 
 

  
E ψ{ } = ( p + q


A) 2

2m
[I ]+ i q

2m
[ σ .

Qop ]

⎛

⎝⎜
⎞

⎠⎟
ψ{ }

 
 
where  


Qop  is an operator involving the momentum operator 

p  and the vector potential  

A  

 
(a) What is  


Qop  ? 

(b) Show that for any function φ ,  

Qopφ =

  
 −i

Bφ , where


B =

∇×

A

  
Solution: 

 
 [

σ .( p + q


A)]2 = ( p + q


A)2[I ] + i σ .( p + q


A)× ( p + q


A)

 Hence,   

  
E ψ{ } = ( p + q


A) 2

2m
[I ]+ i q

2m
[ σ .

Qop ]

⎛

⎝⎜
⎞

⎠⎟
ψ{ }

 
where  

  


Qop = 1

q
( p + q


A)× ( p + q


A)

    
 =

A × p + p ×


A

 
 
For any function φ ,

 
 

 

Qopφ = − i (


A ×

∇φ +


∇×

Aφ) = − iφ (


∇×

A)  

 
   

 = − i

Bφ , where


B =

∇×

A

 Hence, 

  
E ψ{ } = ( p + q


A) 2

2m
[I ]+ µB [


σ .

B]

⎛

⎝⎜
⎞

⎠⎟
ψ{ }

 
 

 where 
 
µB ≡ q

2m
 and  


B ≡


∇×

A . 
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4.8. An electron is described by a Hamiltonian of the 
form 

 

h(

k ) =


2

2m
kx
2
+ ky

2( ) [I ] +η σ x ky − σ y kx( )
 

 
Approximate it with cosines and sines to obtain the 
appropriate tight-binding matrices [α ]  and [β ] . 
 
 
 
SOLUTION: 
 
Please see Section 22.3.2 of LNE. 
 
 
4.9.  Show that (a) the dispersion relation corresponding to 

 
h(

k )  in Problem 4.7 

can be written as 

 

E = E0 +

2
(k ± k0 )

2

2m
 

where 
 

E0 = −
mη

2

2
2
,  

 

k0 =
mη


2

 

 
and (b) the eigenspinors for any given  


k  have spins that are perpendicular to  


k . 

 
 
SOLUTION: 
 
Please see HW Problem 4  
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4.10. The output voltage is measured by the 
floating probe as a function of the Rashba 
constant η  that determines the spin-orbit term 
 
 HR = η (σ xky −σ ykx )  
 
(a) Explain why the output voltage is expected 
to oscillate periodically as a function of η  
(b) Find the period of the oscillation in the output voltage as η  is changed noting that in 

a magnetic field the spin precesses around it with an angular velocity of 
 
ω =

2µB Beff


. 

 
(c) Would there be oscillations if the magnets pointed along z , instead of along x as 
shown? 
 
Solution: 
 
(a) Electrons traveling along +x have non-zero kx and feel an effective magnetic field 
along –y. So their spins rotate around the y axis as they propagate. 
 
The output magnet registers a voltage proportional to the x-component of the spin which 
equals cosα , α  being the angle by which the spin has rotated in propagating from the 
injecting to the detecting contact. 
 
Since α  is proportional to the effective magnetic field and hence to η  the output is 
expected to oscillate as a function of η  
 
(b) 

 
α =

2µB Beff


t = 2ηk


L
ν

= 2mLη
2  

 
Period is obtained by setting 
 

 

2mL
2

Δη = 2π → Δη = π 2

mL  
 

(c) Yes, oscillations are expected if the magnets point along z, since the injected spins 
will point along z and rotate around the effective B-field pointing along y.
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NEGF Equations 
 
GR = [EI − H − Σ] −1

 Gn = GR Σin GA
     Σ = Σ1 + Σ2 + Σ0

 A = GRΓGA = GAΓGR

= i[GR −GA ]     
Γ0,1,2 = i[Σ0,1,2 − Σ0,1,2

+ ]
 

Γ = Γ1 + Γ2 + Γ0  

I p =
q
h
Trace[Σ p

inA − Γ p G
n ]

    

Σin = f1Γ1
Σ1
in
 

+ f2 Γ2
Σ2
in
 

+ Σ0
in

 
 

Coherent transport    Device with multiple terminals “r” 

I = q
h

dE
−∞

+∞

∫ ( f1(E)− f2(E))T (E)
   

Γ = Γr
r
∑

  

T (E) ≡ G(E)
q2 / h

= Trace[Γ1G
RΓ2G

A ]
  

Σin = Σr
in

r
∑ = Γr

r
∑ fr

 
 

Useful Identities:     

� 

 
a x
 
b ( )

m
= εmnpanbp   

 

i, j

∑ εijkεijn = 2δkn

  , i

∑ εijkεimn = δ jmδkn − δ jnδkm

 
 
Pauli spin matrices:    (2x2) Identity matrix:  
 

� 

σ
x

=
0 1

1 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

,

� 

σ y =
0 − i

+i 0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

,

� 

σ
z

=
1 0

0 −1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

  

� 

I =
1 0

0 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 
σmσn = δmn I + i εmnp

p

∑ σ p

 
    

� 

[
 
σ .
 
V 1] [
 
σ .
 
V 2] = (

 
V 1.
 

V 2) [I] + i [
 
σ .(
 

V 1 ×
 
V 2)  

 
Eigenvectors of    


σ .n̂ ≡ σ x sinθ cosφ +σ y sinθ sinφ +σ z cosθ  

corresponding to eigenvalues +1 and -1 can be written as  
c
s

⎧
⎨
⎩

⎫
⎬
⎭

, 
−s*
c*

⎧
⎨
⎩

⎫
⎬
⎭

 respectively, 

where 

 c ≡ cos(θ / 2) e
−iϕ /2

, s ≡ sin(θ / 2) e
+iϕ /2

 


