ECE 659 PRACTICE EXAM IV Actual Exam IV
 Friday, Apr.11, 2014 330-420PM, FRNY B124

CLOSED BOOK

One page of notes provided, please see last page Actual Exam will have five questions.

The following questions have been chosen to stress what I consider the most important concepts / skills that you should be clear on.
4.1. \quad NEGF for device with one spin degenerate level
4.2. Transforming contacts
4.3. Function of a matrix
4.4. Interpreting G^{n}
4.5. Interpreting G^{n}
4.6. Vector potential in Schrodinger equation
4.7. Pauli equation
4.8. Rashba Hamiltonian
4.9. Energy dispersion and eigenspinors of Rashba Hamiltonian
4.10. Spin Precession**
** It may be instructive to try out MATLAB-based numerical examples, please see "MATLAB-based homework" posted on website.

Text:
4.1. A channel with two levels connected to four contacts is described by

$$
\begin{array}{r}
H=\left[\begin{array}{ll}
\varepsilon & 0 \\
0 & \varepsilon
\end{array}\right] \quad \Sigma_{1}=-\frac{i}{2} \gamma_{1}\left(I+P_{1} \vec{\sigma} \cdot \hat{n}_{1}\right) \quad \Sigma_{\overline{1}}=-\frac{i}{2} \gamma_{1}\left(I-P_{1} \vec{\sigma} \cdot \hat{n}_{1}\right) \\
\Sigma_{2}=-\frac{i}{2} \gamma_{2}\left(I+P_{2} \vec{\sigma} \cdot \hat{n}_{2}\right) \quad \Sigma_{\overline{2}}=-\frac{i}{2} \gamma_{2}\left(I-P_{2} \vec{\sigma} \cdot \hat{n}_{2}\right)
\end{array}
$$

Calculate the transmission $\bar{T}_{21}=\operatorname{Trace}\left[\Gamma_{2} G^{R} \Gamma_{1} G^{A}\right]$

Solution:

$$
\begin{aligned}
& \Gamma_{1}=i\left[\Sigma_{1}-\Sigma_{1}^{+}\right]=\gamma_{1}\left(I+P_{1} \vec{\sigma} \cdot \hat{n}_{1}\right) \\
& \Gamma_{2}=i\left[\Sigma_{2}-\Sigma_{2}^{+}\right]=\gamma_{2}\left(I+P_{2} \vec{\sigma} \cdot \hat{n}_{2}\right) \\
& \qquad\left[G^{R}\right]^{-1}=E I-\varepsilon I+i \gamma_{1} I+i \gamma_{2} I \rightarrow\left[G^{R}\right]=\frac{1}{E-\varepsilon+i \gamma_{1}+i \gamma_{2}}[I] \\
& \bar{T}_{21}=\operatorname{Trace}\left[\Gamma_{2} G^{R} \Gamma_{1} G^{A}\right] \\
& \qquad=\frac{\gamma_{1} \gamma_{2}}{(E-\varepsilon)^{2}+\left(\gamma_{1}+\gamma_{2}\right)^{2}} \operatorname{Trace}\left[I+P_{1} \vec{\sigma} \cdot \hat{n}_{1}\right]\left[I+P_{2} \vec{\sigma} \cdot \hat{n}_{2}\right] \\
& \quad=\frac{\gamma_{1} \gamma_{2}}{(E-\varepsilon)^{2}+\left(\gamma_{1}+\gamma_{2}\right)^{2}} \operatorname{Trace}\left[I+P_{1} \vec{\sigma} \cdot \hat{n}_{1}+P_{2} \vec{\sigma} \cdot \hat{n}_{2}+P_{1} P_{2}\left(\vec{\sigma} \cdot \hat{n}_{1}\right)\left(\vec{\sigma} \cdot \hat{n}_{2}\right)\right] \\
& =\frac{\gamma_{1} \gamma_{2}}{(E-\varepsilon)^{2}+\left(\gamma_{1}+\gamma_{2}\right)^{2}} \operatorname{Trace}\left[I+P_{1} \vec{\sigma} \cdot \hat{n}_{1}+P_{2} \vec{\sigma} \cdot \hat{n}_{2}+P_{1} P_{2} \hat{n}_{1} \cdot \hat{n}_{2}+i P_{1} P_{2} \vec{\sigma} \cdot\left(\hat{n}_{1} \times \hat{n}_{2}\right)\right] \\
& =\frac{2 \gamma_{1} \gamma_{2}}{(E-\varepsilon)^{2}+\left(\gamma_{1}+\gamma_{2}\right)^{2}}\left(1+P_{1} P_{2} \hat{n}_{1} \cdot \hat{n}_{2}\right)
\end{aligned}
$$

4.2. A contact pointing along $+z$ is described by $\Gamma=\left[\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right]$.

What is the Γ for an identical contact pointing along +x ?

Solution:

Given: $\Gamma=\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]=\frac{\alpha+\beta}{2}[I]+\frac{\alpha-\beta}{2}\left[\sigma_{z}\right]$

If contact points along x

$$
\begin{aligned}
\Gamma & =\frac{\alpha+\beta}{2}[I]+\frac{\alpha-\beta}{2}\left[\sigma_{x}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
\alpha+\beta & \alpha-\beta \\
\alpha-\beta & \alpha+\beta
\end{array}\right]
\end{aligned}
$$

Can obtain this result directly through basis transformation as well.

$$
\begin{gathered}
\Gamma=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right] \\
=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
\alpha & \alpha \\
\beta & -\beta
\end{array}\right] \\
=\frac{1}{2}\left[\begin{array}{ll}
\alpha+\beta & \alpha-\beta \\
\alpha-\beta & \alpha+\beta
\end{array}\right]
\end{gathered}
$$

4.3. Evaluate the matrix $\exp \left[i \alpha \sigma_{y}\right]$.

Solution:

If we use $\pm \mathrm{y}$ as our basis, $\exp \left[i \alpha \sigma_{y}\right]$ will be given by

$$
\exp i \alpha\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}
\end{array}\right]
$$

Transforming from $\pm \mathrm{y}$ to $\pm \mathrm{z}$,

$$
\begin{aligned}
& \exp \left[i \alpha \sigma_{y}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}
\end{array}\right]\left[\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
e^{i \alpha} & -i e^{i \alpha} \\
-i e^{-i \alpha} & e^{-i \alpha}
\end{array}\right] \quad=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
\end{aligned}
$$

4.4. An electron has a spinor wavefunction given by $\frac{1}{\sqrt{14}}\left\{\begin{array}{l}-1 i \\ 2+3 i\end{array}\right\}$ What are the x, y and z components of its spin \vec{S}.

Solution:

$$
\begin{aligned}
\psi \psi^{+}= & \frac{1}{14}\left\{\begin{array}{l}
-1 i \\
2+3 i
\end{array}\right\}\left\{\begin{array}{ll}
1 i & 2-3 i
\end{array}\right\} \\
& =\frac{1}{14}\left[\begin{array}{cc}
1 & -3-2 i \\
-3+2 i & 13
\end{array}\right]
\end{aligned}
$$

Compare

$$
\frac{G^{n}}{2 \pi}=\frac{1}{2}\left[\begin{array}{ll}
N+S_{z} & S_{x}-i S_{y} \\
S_{x}+i S_{y} & N-S_{z}
\end{array}\right]
$$

Clearly, $N+S_{z}=\frac{1}{7}, N-S_{z}=\frac{13}{7} \quad \rightarrow \quad N=1, S_{z}=-\frac{6}{7}$

$$
S_{x}=-\frac{3}{7}, S_{y}=\frac{2}{7}
$$

(Can do this more formally by taking traces too)

$$
\vec{S}=-\frac{3}{7} \hat{x}+\frac{2}{7} \hat{y}-\frac{6}{7} \hat{z}
$$

4.5. At a point in a channel the correlation matrix $\left[\mathrm{G}^{\mathrm{n}}\right]$ is given by
(e) $\frac{G^{n}}{2 \pi}=\left[\begin{array}{ll}50 & +i 10 \\ -i 10 & 50\end{array}\right]$
(a) What is the number of electrons?
(b) What is the number of spins and in what direction do they point?

Solution:

$$
\frac{G^{n}}{2 \pi}=\frac{1}{2}\left[\begin{array}{ll}
N+S_{z} & S_{x}-i S_{y} \\
S_{x}+i S_{y} & N-S_{z}
\end{array}\right]
$$

Clearly, $N+S_{z}=100=N-S_{z} \rightarrow N=100, S_{z}=0$

$$
S_{x}=0, S_{y}=-20
$$

More formally we can multiply by Pauli matrices and take traces.

$$
\begin{aligned}
& N=\operatorname{Trace}\left[\begin{array}{cc}
50 & +i 10 \\
-i 10 & 50
\end{array}\right]=100 \\
& S_{x}=\operatorname{Trace}\left[\begin{array}{cc}
50 & +i 10 \\
-i 10 & 50
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\operatorname{Trace}\left[\begin{array}{ll}
+i 10 & \ldots \\
\ldots & -i 10
\end{array}\right]=0 \\
& S_{y}=\operatorname{Trace}\left[\begin{array}{ll}
50 & +i 10 \\
-i 10 & 50
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=\operatorname{Trace}\left[\begin{array}{cc}
-10 & \cdots \\
\ldots & -10
\end{array}\right]=-20 \\
& S_{z}=\operatorname{Trace}\left[\begin{array}{cc}
50 & +i 10 \\
-i 10 & 50
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\operatorname{Trace}\left[\begin{array}{cc}
50 & \cdots \\
\ldots & -50
\end{array}\right]=0
\end{aligned}
$$

100 electrons with net spin of 20 pointing along negative y.
4.6. The energy in a magnetic field is written in the form (\mathbf{A} is the vector potential)

$$
E(\vec{x}, \vec{p})=\sum_{j} \frac{\left(p_{j}+q A_{j}(\vec{x})\right)^{2}}{2 m}+U(\vec{x})
$$

Starting from the semiclassical equations of motion

$$
\frac{d \vec{x}}{d t}=\vec{\nabla}_{p} E \quad \frac{d \bar{p}}{d t}=-\vec{\nabla} E
$$

show that

$$
\begin{aligned}
& \frac{d \vec{x}}{d t}=\frac{\vec{p}+q \vec{A}(\vec{x})}{m} \equiv \frac{\vec{p}^{\prime}}{m} \\
& \frac{d \vec{p}^{\prime}}{d t}=-q(\vec{F}+\vec{v} \times \vec{B})
\end{aligned}
$$

where

$$
q \vec{F}=\vec{\nabla} U \quad \text { and } \quad \vec{B}=\vec{\nabla} \times \vec{A}
$$

SOLUTION:

$$
\begin{aligned}
& E(\vec{x}, \vec{p})=\sum_{j} \frac{\left(p_{j}+q A_{j}(\vec{x})\right)^{2}}{2 m}+U(\vec{x}) \\
& \rightarrow \quad v_{i} \equiv \frac{d x_{i}}{d t}=\frac{p_{i}+q A_{i}(\vec{x})}{m}, \rightarrow \vec{v}=\frac{\vec{p}+q \vec{A}(\vec{x})}{m}, \\
& \rightarrow \quad \frac{d p_{i}}{d t}=-\frac{\partial U}{\partial x_{i}}-q \sum_{j} v_{j} \frac{\partial A_{j}}{\partial x_{i}} \\
& \\
& \quad \frac{d}{d t}\left(p_{i}+q A_{i}(\vec{x})\right)=-\frac{\partial U}{\partial x_{i}}-q \sum_{j} v_{j}\left(\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x_{j}}\right) \\
& \quad=-\frac{\partial U}{\partial x_{i}}-q \sum_{j, n} v_{j} \varepsilon_{i j n}(\vec{\nabla} x \vec{A})_{n} \\
& \rightarrow \quad \frac{d(\vec{p}+q \vec{A})}{d t}=-q(\vec{F}+\vec{v} \times \vec{B}) \quad \text { where } q \vec{F}=\vec{\nabla} U \text { and } \vec{B}=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

4.7. The Pauli equation for electrons in a magnetic field is written as (assuming $U=0$ for simplicity)

$$
E\{\psi\}=\frac{[\vec{\sigma} \cdot(\vec{p}+q \vec{A})]^{2}}{2 m}\{\psi\}
$$

where the wavefunction $\{\psi\}$ is a (2×1) spinor.
Show that this equation can be rewritten in the form

$$
E\{\psi\}=\left(\frac{(\vec{p}+q \vec{A})^{2}}{2 m}[I]+i \frac{q}{2 m}\left[\vec{\sigma} \cdot \vec{Q}_{o p}\right]\right)\{\psi\}
$$

where $\vec{Q}_{o p}$ is an operator involving the momentum operator \vec{p} and the vector potential \vec{A}
(a) What is $\vec{Q}_{o p}$?
(b) Show that for any function $\phi, \vec{Q}_{o p} \phi=-i \hbar \vec{B} \phi$, where $\vec{B}=\vec{\nabla} \times \vec{A}$

Solution:

$$
[\vec{\sigma} \cdot(\vec{p}+q \vec{A})]^{2}=(\vec{p}+q \vec{A})^{2}[I]+i \vec{\sigma} \cdot(\vec{p}+q \vec{A}) \times(\vec{p}+q \vec{A})
$$

Hence,

$$
E\{\psi\}=\left(\frac{(\vec{p}+q \vec{A})^{2}}{2 m}[I]+i \frac{q}{2 m}\left[\vec{\sigma} \cdot \vec{Q}_{o p}\right]\right)\{\psi\}
$$

where

$$
\vec{Q}_{o p}=\frac{1}{q}(\vec{p}+q \vec{A}) \times(\vec{p}+q \vec{A})=\vec{A} \times \vec{p}+\vec{p} \times \vec{A}
$$

For any function ϕ,

$$
\begin{aligned}
\vec{Q}_{o p} \phi= & -i \hbar(\vec{A} \times \vec{\nabla} \phi+\vec{\nabla} \times \vec{A} \phi)=-i \hbar \phi(\vec{\nabla} \times \vec{A}) \\
& =-i \hbar \vec{B} \phi, \quad \text { where } \vec{B}=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

Hence,

$$
E\{\psi\}=\left(\frac{(\vec{p}+q \vec{A})^{2}}{2 m}[I]+\mu_{B}[\vec{\sigma} \cdot \vec{B}]\right)\{\psi\}
$$

where $\mu_{B} \equiv \frac{q \hbar}{2 m}$ and $\vec{B} \equiv \vec{\nabla} \times \vec{A}$.
4.8. An electron is described by a Hamiltonian of the form

$$
h(\vec{k})=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right)[I]+\eta\left(\sigma_{x} k_{y}-\sigma_{y} k_{x}\right)
$$

Approximate it with cosines and sines to obtain the appropriate tight-binding matrices $[\alpha]$ and $[\beta]$.

SOLUTION:

Please see Section 22.3.2 of LNE.
4.9. Show that (a) the dispersion relation corresponding to $h(\vec{k})$ in Problem 4.7 can be written as

$$
\begin{aligned}
& E=E_{0}+\frac{\hbar^{2}\left(k \pm k_{0}\right)^{2}}{2 m} \\
& \text { where } E_{0}=-\frac{m \eta^{2}}{2 \hbar^{2}}, \quad k_{0}=\frac{m \eta}{\hbar^{2}}
\end{aligned}
$$

and (b) the eigenspinors for any given \vec{k} have spins that are perpendicular to \vec{k}.

SOLUTION:

Please see HW Problem 4
4.10. The output voltage is measured by the floating probe as a function of the Rashba constant η that determines the spin-orbit term

$$
H_{R}=\eta\left(\sigma_{x} k_{y}-\sigma_{y} k_{x}\right)
$$

(a) Explain why the output voltage is expected to oscillate periodically as a function of η

Change Rashba constant with gate voltage (not shown)
(b) Find the period of the oscillation in the output voltage as η is changed noting that in a magnetic field the spin precesses around it with an angular velocity of $\omega=\frac{2 \mu_{B} B_{e f f}}{\hbar}$.
(c) Would there be oscillations if the magnets pointed along \boldsymbol{z}, instead of along x as shown?

Solution:

(a) Electrons traveling along $+x$ have non-zero k_{x} and feel an effective magnetic field along -y . So their spins rotate around the y axis as they propagate.

The output magnet registers a voltage proportional to the x -component of the spin which equals $\cos \alpha, \alpha$ being the angle by which the spin has rotated in propagating from the injecting to the detecting contact.

Since α is proportional to the effective magnetic field and hence to η the output is expected to oscillate as a function of η
(b)

$$
\alpha=\frac{2 \mu_{B} B_{e f f}}{\hbar} t=\frac{2 \eta k}{\hbar} \frac{L}{v}=\frac{2 m L \eta}{\hbar^{2}}
$$

Period is obtained by setting

$$
\frac{2 m L}{\hbar^{2}} \Delta \eta=2 \pi \rightarrow \Delta \eta=\frac{\pi \hbar^{2}}{m L}
$$

(c) Yes, oscillations are expected if the magnets point along z , since the injected spins will point along z and rotate around the effective B -field pointing along y .

NEGF Equations

$G^{R}=[E I-H-\Sigma]^{-1}$
$G^{n}=G^{R} \Sigma^{i n} G^{A}$
$\Sigma=\Sigma_{1}+\Sigma_{2}+\Sigma_{0}$
$A=G^{R} \Gamma G^{A}=G^{A} \Gamma G^{R}$
$=i\left[G^{R}-G^{A}\right]$
$\Gamma_{0,1,2}=i\left[\Sigma_{0,1,2}-\Sigma_{0,1,2}^{+}\right]$
$\tilde{I}_{p}=\frac{q}{h} \operatorname{Trace}\left[\Sigma_{p}^{i n} A-\Gamma_{p} G^{n}\right]$

$$
\Sigma^{i n}=\underbrace{f_{1} \Gamma_{1}}_{\Sigma_{1}^{i n}}+\Gamma_{1}+\Gamma_{2}+\Gamma_{0} . \underbrace{f_{2} \Gamma_{2}}_{2}+\Sigma_{0}^{\text {in }}
$$

Coherent transport

$$
\begin{aligned}
& I=\frac{q}{h} \int_{-\infty}^{+\infty} d E\left(f_{1}(E)-f_{2}(E)\right) \bar{T}(E) \\
& \quad \bar{T}(E) \equiv \frac{G(E)}{q^{2} / h}=\operatorname{Trace}\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right]
\end{aligned}
$$

Device with multiple terminals " r "

$$
\begin{aligned}
& \Gamma=\sum_{r} \Gamma_{r} \\
& \Sigma^{i n}=\sum_{r} \Sigma_{r}^{i n}=\sum_{r} \Gamma_{r} f_{r}
\end{aligned}
$$

Useful Identities: $\quad(\vec{a} \times \vec{b})_{m}=\varepsilon_{m n p} a_{n} b_{p}$

$$
\sum_{i, j} \varepsilon_{i j k} \varepsilon_{i j n}=2 \delta_{k n}
$$

$$
\sum_{i} \varepsilon_{i j k} \varepsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}
$$

Pauli spin matrices:

(2x2) Identity matrix:

$$
\begin{gathered}
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
+i & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\sigma_{m} \sigma_{n}=\delta_{m n} I+i \sum_{p} \varepsilon_{m n p} \sigma_{p} \\
{\left[\vec{\sigma} \cdot \vec{V}_{1}\right]\left[\vec{\sigma}^{1} \cdot \vec{V}_{2}\right]=\left(\vec{V}_{1} \cdot \vec{V}_{2}\right)[I]+i\left[\vec{\sigma} \cdot\left(\vec{V}_{1} \times \vec{V}_{2}\right)\right.}
\end{gathered}
$$

Eigenvectors of $\quad \vec{\sigma} \cdot \hat{n} \equiv \sigma_{x} \sin \theta \cos \phi+\sigma_{y} \sin \theta \sin \phi+\sigma_{z} \cos \theta$
corresponding to eigenvalues +1 and -1 can be written as $\left\{\begin{array}{l}c \\ s\end{array}\right\},\left\{\begin{array}{l}-s^{*} \\ c^{*}\end{array}\right\}$ respectively, where

$$
c \equiv \cos (\theta / 2) e^{-i \varphi / 2}, s \equiv \sin (\theta / 2) e^{+i \varphi / 2}
$$

