ECE 659, PRACTICE EXAM III

Actual Exam
Friday, Mar.14, 2014, FRNY B124, 330-420PM

NAME : \qquad

CLOSED BOOK

One page of notes provided, please see last page Actual Exam will have five questions.

> The following questions have been chosen to stress
> what I consider the most important concepts / skills that you should be clear on.
3.1. NEGF treatment of one-level device
3.2. NEGF from Schrodinger
3.3. Important NEGF related identity
3.4. Sum rule for coherent transport
3.5. 1D self-energy and scattering theory
3.6. 1D scattering from NEGF
3.7. Dephasing processes in NEGF
3.8. Potential drop across a scatterer**
3.9. 2D self-energy using basis transformation
3.10. Conductance quantization**
** It may be instructive to try out MATLAB-based numerical examples, please see "MATLAB-based homework" posted on website.

Text: Lecture 19-21, LNE
Reference: Chapters 8-9, QTAT
3.1. A one-level device is described by a (1x1) Hamiltonian and contact self-energies

$$
[H]=[\varepsilon] \quad\left[\Sigma_{1}\right]=-i\left[\gamma_{1} / 2\right] \quad, \quad\left[\Sigma_{2}\right]=-i\left[\gamma_{2} / 2\right]
$$

Obtain an expression for the current and the correlation function (or the "electron density") $G^{n}(E)$ in terms of $\varepsilon, \gamma_{1}, \gamma_{2}$ and the Fermi functions $\mathrm{f}_{1}(\mathrm{E}), \mathrm{f}_{2}(\mathrm{E})$.

SOLUTION:

$$
\begin{aligned}
& G^{R}=(E-\varepsilon+i \gamma / 2)^{-1} \quad \gamma=\gamma_{1}+\gamma_{2} \\
& \Gamma_{1}=i\left(-\frac{i \gamma_{1}}{2}-i \frac{\gamma_{1}}{2}\right)=\gamma_{1} \\
& \Gamma_{2}=\gamma_{2} \\
& G^{n}=G^{R}\left(\Gamma_{1} f_{1}+\Gamma_{2} f_{2}\right) G^{A} \\
& =\frac{\gamma_{1} f_{1}+\gamma_{2} f_{2}}{(E-\varepsilon)^{2}+(\gamma / 2)^{2}} \\
& A=\quad i\left[G^{R}-G^{A}\right]=i\left[\frac{1}{E-\varepsilon+i \gamma / 2}-\frac{1}{E-\varepsilon-i \gamma / 2}\right] \\
& =\frac{\gamma}{(E-\varepsilon)^{2}+(\gamma / 2)^{2}} \\
& \tilde{I}_{1}=\frac{q}{h} \operatorname{Trace}\left[\Sigma_{1}^{i n} A-\Gamma_{1} G^{n}\right]=\frac{q}{h}\left[\gamma_{1} f_{1} A-\gamma_{1} G^{n}\right] \\
& =\frac{q}{h} \frac{\gamma \gamma_{1} f_{1}-\gamma_{1}\left(\gamma_{1} f_{1}+\gamma_{2} f_{2}\right)}{(E-\varepsilon)^{2}+(\gamma / 2)^{2}}=\frac{q}{h} \frac{\gamma_{1} \gamma_{2}\left(f_{1}-f_{2}\right)}{(E-\varepsilon)^{2}+(\gamma / 2)^{2}} \\
& I_{1}=\int_{-\infty}^{+\infty} d E \tilde{I}_{1}=\frac{q}{h} \int_{-\infty}^{+\infty} d E \underbrace{\frac{\gamma_{1} \gamma_{2}}{(E-\varepsilon)^{2}+(\gamma / 2)^{2}}}_{\equiv \bar{T}(E)}\left(f_{1}-f_{2}\right)
\end{aligned}
$$

3.2. Starting from the modified Schrodinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=E \psi=[H+\Sigma] \psi+S
$$

show how you obtain the NEGF equations for the matrix electron density $\left[\mathrm{G}^{\mathrm{n}}\right]$, the matrix density of states [A],

$$
G^{n}=G^{R} \Sigma^{i n} G^{A}, A=G^{R} \Gamma G^{A}
$$

and the current

$$
\tilde{I}_{p}=\frac{q}{h} \operatorname{Trace}\left[\Sigma_{p}^{i n} A-\Gamma_{p} G^{n}\right]
$$

SOLUTION: Please see Section 19.2 of LNE.
3.3. Starting from the relations

$$
G^{R}=[E I-H-\Sigma]^{-1}, G^{A} \equiv\left[G^{R}\right]^{+} \text {and } \Gamma=i\left[\Sigma-\Sigma^{+}\right]
$$

show that

$$
A \equiv G^{R} \Gamma G^{A}=G^{A} \Gamma G^{R}=i\left[G^{R}-G^{A}\right]
$$

SOLUTION:

$$
\begin{gathered}
\left(G^{R}\right)^{-1}=E I-H-\Sigma \\
\left(\left(G^{R}\right)^{-1}\right)^{\dagger}=\left(G^{A}\right)^{-1}=E I-H-\Sigma^{+} \\
\left(G^{R}\right)^{-1}-\left(G^{A}\right)^{-1}=\Sigma^{\dagger}-\Sigma=i \Gamma
\end{gathered}
$$

- Multiply by G^{R} from left and G^{A} from right

$$
G^{A}-G^{R}=i G^{R} \Gamma G^{A}
$$

- multiply by G^{A} from left and G^{R} from right

$$
\begin{aligned}
G^{A}-G^{R} & =i G^{A} \Gamma G^{R} \\
\text { Hence } i\left(G^{R}-G^{A}\right) & =G^{R} \Gamma G^{A}=G^{A} \Gamma G^{R}
\end{aligned}
$$

3.4. Starting from $\quad \tilde{I}_{p}=\frac{q}{h} \operatorname{Trace}\left[\Sigma_{p}^{i n} A-\Gamma_{p} G^{n}\right]$ show that for a multiterminal device
(a) $\quad \tilde{I}_{p}=\frac{q}{h} \sum_{r}\left(f_{p}(E)-f_{r}(E)\right) \bar{T}_{p r}(E) \quad \bar{T}_{p r}(E) \equiv \operatorname{Trace}\left[\Gamma_{p} G^{R} \Gamma_{r} G^{A}\right]$
(b) $\quad \sum_{p} \bar{T}_{p r}=\sum_{p} \bar{T}_{r p}$

SOLUTION:

$$
\begin{aligned}
& \tilde{I}_{p}=\frac{q}{h} \text { Trace } f_{p} \Gamma_{p} A-\Gamma_{p} G^{n} \Gamma_{\uparrow} \\
& G^{R} \Gamma_{\uparrow}^{A} G^{A} G^{R} \sum^{i} G^{A} \\
& \sum_{r} \Gamma_{r} \sum_{r} \Gamma_{r} f_{r} \\
& =\frac{q}{h} \sum_{r} \text { Trace } f_{p} \Gamma_{p} G^{R} \Gamma_{r} G^{A}-\Gamma_{p} G^{R} \Gamma_{r} f_{r} G^{A} \\
& =\frac{q}{h} \sum_{r}\left(f_{p}-f_{r}\right) \underbrace{T_{\text {race }}\left[\Gamma_{p} G^{R} \Gamma_{r} G^{A}\right]}_{\equiv \overline{T_{p r}}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sum_{p} \bar{T}_{p r} & =\operatorname{Trace} \Gamma G^{R} \Gamma_{r} G^{A}=\operatorname{Trace} \Gamma_{r} G^{A} \Gamma G^{R}=\operatorname{Trace} \Gamma_{r} A \\
\sum_{p} \bar{T}_{r p} & =\operatorname{Trace} \Gamma_{r} G^{R} \Gamma G^{A}=\operatorname{Trace} \Gamma_{r} A
\end{aligned}
$$

3.5. Consider a 1 D wire with a potential at site " 0 ".

Assume that the solution for $n \leq 0$ can be written as a sum of incident and reflected waves as shown while the solution for $n \geq 0$ can be written as a transmitted wave.
We can then write the wavefunctions at $n=-1,0$ and +1 as

$$
\begin{gather*}
\psi_{-1}=A e^{-i k a}+\rho A e^{+i k a} \tag{1}\\
\psi_{0}=A+\rho A=\tau A \tag{2}\\
\psi_{+1}=\tau A e^{+i k a} \tag{3}
\end{gather*}
$$

Starting from $E \psi_{0}=(\varepsilon+U) \psi_{0}+t \psi_{-1}+t \psi_{+1}$
use Eqs.(1), (2) and (3) from above to show that $E \psi_{0}=(\varepsilon+U+2 \sigma) \psi_{0}+s$ and obtain an expression for σ and s in terms of $\varepsilon, t, k a, A$
Also find the transmission coefficient.

SOLUTION:

From (3) and (2), $\quad \psi_{+1}=e^{i k a} \psi_{0}$
From (1) and (2), $\quad \psi_{-1}=e^{i k a} \psi_{0}+A e^{-i k a}-A e^{+i k a}$

Substituting into (4)

$$
\begin{aligned}
& E \psi_{0}=(\varepsilon+U+\underbrace{2 t e^{i k a}}_{2 \sigma}) \psi_{0}+\underbrace{t A\left(e^{-i k a}-e^{+i k a}\right)}_{s} \\
& \sigma=t e^{i k a}, \quad s=-2 i t A \sin k a \\
& \psi_{0}=\frac{t A\left(e^{-i k a}-e^{+i k a}\right)}{E-\varepsilon-U-2 t e^{i k a}} \\
& \tau=\frac{\psi_{0}}{A}=\frac{-2 i t \sin k a}{2 t \cos k a-U-2 t e^{i k a}} \\
& =\frac{-2 i t \sin k a}{-U-2 i t \sin k a} \\
& \tau \tau^{*}=\frac{(2 t \sin k a)^{2}}{U^{2}+(2 t \sin k a)^{2}}
\end{aligned}
$$

3.6. Calculate the transmission through a single scatterer of height U in a 1D wire $(\mathrm{t}<0)$ using the expression

$$
\bar{T}(E)=\operatorname{Trace}\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right]
$$

and compare with the result in Prob.3.5 from scattering theory.

SOLUTION:

Treat site " 0 " as device described by $(1 \mathrm{x} 1)[\mathrm{H}]$ matrix and rest as contacts.

$$
\begin{aligned}
& {[H]=\varepsilon+U} \\
& {\left[\Sigma_{1}\right]=\left[\Sigma_{2}\right]=t e^{i k a}} \\
& {\left[\Gamma_{1}\right]=\left[\Gamma_{2}\right]=i\left(t e^{i k a}-t e^{-i k a}\right)=-2 t \sin k a} \\
& \bar{T}(E)=\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right] \\
& =(2 t \sin k a)^{2} \frac{1}{E-\varepsilon-U-2 t e^{i k a}} \frac{1}{E-\varepsilon-U-2 t e^{-i k a}} \\
& =(2 t \sin k a)^{2} \frac{1}{2 t \cos k a-U-2 t e^{i k a}} \frac{1}{2 t \cos k a-U-2 t e^{-i k a}} \\
& =(2 t \sin k a)^{2} \frac{1}{-U-2 i t \sin k a} \frac{1}{-U+2 i t \sin k a} \\
& =\frac{(2 t \sin k a)^{2}}{U^{2}+(2 t \sin k a)^{2}}
\end{aligned}
$$

3.7. Suppose elastic dephasing processes are included in the NEGF model by adding extra self-energy terms $\Sigma_{0}=D_{1} G$ and $\Sigma_{0}^{i n}=D_{2} G^{n}$
Does D_{1} have to equal D_{2} ? Explain why or why not.

SOLUTION:

D_{1} must equal D_{2} in order to ensure current conservation.
The current into the "contact" described by $\Sigma_{0}=D_{1} G$ and $\Sigma_{0}^{\text {in }}=D_{2} G^{n}$ is given by
$\tilde{I}_{0}=\frac{q}{h} \operatorname{Trace}\left[\Sigma_{0}^{i n} A-\Gamma_{0} G^{n}\right]$
$\Gamma_{0}=i\left[\Sigma_{0}-\Sigma_{0}^{+}\right]=D_{1} i\left[G-G^{+}\right]=D_{1} A$

Substituting (2) into (1),
$\tilde{I}_{0}=\frac{q}{h} \operatorname{Trace}\left[D_{1} G^{n} A-D_{2} A G^{n}\right]=\frac{q}{h}\left(D_{1}-D_{2}\right) \operatorname{Trace}\left[G^{n} A\right]$

For current conservation, $\tilde{I}_{0}=0$
Hence, $\mathrm{D}_{1}=\mathrm{D}_{2}$.
3.8. Shown below is the occupation factor defined as

$$
f(p)=\frac{G^{n}(p, p)}{A(p, p)}
$$

a
$U=t_{0}$
calculated for a 1D wire with one scatterer $\mathrm{U}=\mathrm{t}_{0}$ for $\mathrm{D}_{0}=0.09$ $\mathrm{t}_{0}{ }^{2}$, (momentum conserving, . An energy $\mathrm{E}=\mathrm{t}_{0}$ is used.

The semiclassical curve shows a drop of 0.375 at each end
and $\quad 0.25$ at the scatterer.
How would these figures change if the scatterer potential were $U=\sqrt{3} t_{0}$ instead of $U=t_{0}$?

SOLUTION:

1. $T=\frac{\left(2 t_{0} \sin k a\right)^{2}}{U^{2}+\left(2 t_{0} \sin k a\right)^{2}}$

$$
E=t_{0}=2 t_{0}(1-\cos k a) \rightarrow \cos k a=\frac{1}{2} \rightarrow \sin k a=\frac{\sqrt{3}}{2}
$$

2. $T=\frac{3}{3+3} \rightarrow \frac{1-T}{T}=1$
3. The normalized resistances are $\frac{1}{2}: 1: \frac{1}{2}$
and so the potential drops are also in the same ratio

$$
1: 2: 1=\frac{1}{4}: \frac{2}{4}: \frac{1}{4}=0.25: 0.5: 0.25
$$

3.9. Consider a conductor described by a tight-binding model two lattice sites along the width as shown below. We wish to find the self-energy Σ.

We can represent it by a 1-D chain of the form

$$
\begin{gathered}
\ldots \quad \beta^{+} \alpha{ }^{\beta} \alpha \\
\text { where } \\
\alpha=\left[\begin{array}{ll}
\varepsilon & t \\
t & \varepsilon
\end{array}\right], \beta=\left[\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right]
\end{gathered}
$$

The matrix α has eigenvalues $(\varepsilon+t)$ and $(\varepsilon-t)$
with eigenvectors $\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\frac{1}{\sqrt{2}}\binom{1}{-1}$ respectively.
We can use these eigenvectors as the basis, to diagonalize the matrix α.
(a) Write down the matrices α, β. And $\Sigma(\mathrm{E})$ in this eigenvector basis (the one that diagonalizes α).
(b) Write down the matrix $\Sigma(\mathrm{E})$ in the original basis.

SOLUTION:

(a)

$$
\begin{aligned}
& \alpha=\left[\begin{array}{cc}
\varepsilon+t & 0 \\
0 & \varepsilon-t
\end{array}\right], \beta=\left[\begin{array}{cc}
t & 0 \\
0 & t
\end{array}\right] \\
& \Sigma(E)=\left[\begin{array}{cc}
t e^{i k_{1} a} & 0 \\
0 & t e^{i k_{2} a}
\end{array}\right] \equiv\left[\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right]
\end{aligned}
$$

where k_{1} and k_{2} are given by
(b)

$$
\left.\begin{array}{rl}
E & =\varepsilon+t+2 t \cos k_{1} a
\end{array} \rightarrow \quad \cos k_{1} a=(\varepsilon+t) / 2 t, ~ \begin{array}{l}
\cos k_{2} a=(\varepsilon-t) / 2 t \\
\\
=\varepsilon-t+2 t \cos k_{2} a
\end{array}\right)=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
p & p \\
q & -q
\end{array}\right] .
$$

3.10. The plot shows the transmission $T(E)$ over the energy range $-0.05 t_{0}<E<+1.05 t_{0}$ for a ballistic conductor of width $\mathrm{W}=26 *$ (25 points along width).

The model uses a 2D square lattice model with onsite elements $\varepsilon=4 t_{0}, t=-t_{0}$, having a dispersion relation

$$
E(\vec{k})=2 t_{0}\left(1-\cos k_{x} a\right)+2 t_{0}\left(1-\cos k_{y} a\right)
$$

(a) The transmission shows a series of steps
 occurring at energies which are desribed well by the relation

$$
\begin{equation*}
\varepsilon_{n}=2 t_{0}\left(1-\cos \frac{n \pi}{26}\right) \tag{1}
\end{equation*}
$$

such that $\quad \varepsilon_{n}<E<\varepsilon_{n+1}, \quad \bar{T}(E)=n$
Explain why.
(b) Suppose the same conductor is assumed to be rolled up along the width in the form of a cylinder, corresponding to imposing periodic boundary conditions along the width. What would the steps in transmission look like?

SOLUTION: Please see Section 21.1.

$$
\ldots \beta^{\beta^{+}} \alpha{ }^{\beta} \alpha
$$

The 2-D model can be represented by a 1-D chain of the form shown above.
(a) The eigenvalues α_{n} of the matrix [α] are given by

$$
\alpha_{n}=\varepsilon-2 t_{0} \cos k_{y} a=4 t_{0}-2 t_{0} \cos k_{y} a, \quad k_{y} a=\frac{n \pi a}{W}=\frac{n \pi}{26}
$$

Each eigenvalue is related to a separate subabnd with a dispersion relation

$$
E_{n}\left(k_{x}\right)=\alpha_{n}-2 t_{0} \cos k_{x} a
$$

The energies ε_{n} in Eq.(1) above are given by

$$
\begin{aligned}
\varepsilon_{n}=\min (E) & =\alpha_{n}-2 t_{0} \quad \text { for } k_{x}=0 \\
& =2 t_{0}-2 t_{0} \cos \frac{n \pi}{26}
\end{aligned}
$$

(b) For periodic boundary conditions, the eigenvalues α_{n} of the matrix [α] are given by

$$
\begin{aligned}
& \alpha_{n}=\varepsilon-2 t_{0} \cos k_{y} a=4 t_{0}-2 t_{0} \cos k_{y} a, \quad k_{y} a=\frac{2 n \pi a}{W}=\frac{2 n \pi}{25} \\
& E_{n}\left(k_{x}\right)=\alpha_{n}-2 t_{0} \cos k_{x} a \\
& \varepsilon_{n}=\min (E)=\alpha_{n}-2 t_{0} \quad \text { for } k_{x}=0 \\
& \quad=2 t_{0}-2 t_{0} \cos \frac{2 n \pi}{25}
\end{aligned}
$$

The transmission is given by

$$
\varepsilon_{n}<E<\varepsilon_{n+1}, \quad \bar{T}(E)=2 n+1
$$

Lowest step occurs at $\mathrm{n}=0$ and subsequent steps are of height two because of two degenerate levels.

NEGF Equations

$$
\begin{aligned}
& G^{R}=[E I-H-\Sigma]^{-1} \\
& G^{n}=G^{R} \Sigma^{i n} G^{A} \\
& A=G^{R} \Gamma G^{A}=G^{A} \Gamma G^{R} \\
& =i\left[G^{R}-G^{A}\right] \\
& \tilde{I}_{p}=\frac{q}{h} \operatorname{Trace}\left[\Sigma_{p}^{i n} A-\Gamma_{p} G^{n}\right]
\end{aligned}
$$

$$
\Sigma=\Sigma_{1}+\Sigma_{2}+\Sigma_{0}
$$

$$
\begin{aligned}
& \Gamma_{0,1,2}=i\left[\Sigma_{0,1,2}-\Sigma_{0,1,2}^{+}\right] \\
\Gamma= & \Gamma_{1}+\Gamma_{2}+\Gamma_{0} \\
\Sigma^{i n}= & \underbrace{f_{1} \Gamma_{1}}_{\Sigma_{1}^{i n}}+\underbrace{f_{2} \Gamma_{2}}_{\Sigma_{2}^{i n}}+\Sigma_{0}^{i n}
\end{aligned}
$$

Coherent transport

$$
\begin{aligned}
I= & \frac{q}{h} \int_{-\infty}^{+\infty} d E\left(f_{1}(E)-f_{2}(E)\right) \bar{T}(E) \\
& \bar{T}(E) \equiv \frac{G(E)}{q^{2} / h}=\operatorname{Trace}\left[\Gamma_{1} G^{R} \Gamma_{2} G^{A}\right]
\end{aligned}
$$

Device with multiple terminals " r "
$\Gamma=\sum_{r} \Gamma_{r}$
$\Sigma^{i n}=\sum_{r} \Sigma_{r}^{i n}=\sum_{r} \Gamma_{r} f_{r}$

This integral may be useful: $\int_{-\infty}^{+\infty} \frac{d x}{x^{2}+a^{2}}=\frac{\pi}{a}$

