ECE 659, EXAM II
 Friday, Feb.20, 2014, EE117, 230-320PM

NAME: SOLUTION

CLOSED BOOK

$$
\text { Useful relation } \quad[h(\vec{k})]=\sum_{m}\left[H_{n m}\right] e^{+i \vec{k} \cdot\left(\vec{r}_{m}-\vec{r}_{n}\right)}
$$

All five questions carry equal weight

Please show all work.
No credit for just writing down the answer, even if correct.
2.1. Consider the radial Schrodinger equation for an s-level in a helium atom (atomic number $\mathrm{Z}=2$)

$$
\begin{equation*}
E f(r)=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r}\right) f(r) \tag{A}
\end{equation*}
$$

Assuming a solution of the form $f(r)=r e^{-r / a}$ obtain expressions for ' a ' and the corresponding energy E in terms of the parameters appearing in (A).

SOLUTION:

Substituting $f(r)=r e^{-r / a}$ into (A)

$$
\begin{gathered}
E r e^{-r / a}=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r}\right) r e^{-r / a} \\
=\left(-\frac{\hbar^{2}}{2 m a} \frac{d^{2}}{d \rho^{2}}-\frac{Z q^{2}}{4 \pi \varepsilon_{0} \rho}\right) \rho e^{-\rho}, \quad \rho \equiv r / a \\
=\left(-\frac{\hbar^{2}}{2 m a} \frac{d}{d \rho}\right)(1-\rho) e^{-\rho}-\frac{Z q^{2}}{4 \pi \varepsilon_{0}} e^{-\rho} \\
=\frac{\hbar^{2}}{2 m a}(2-\rho) e^{-\rho}-\frac{q^{2}}{4 \pi \varepsilon_{0}} e^{-\rho} \\
E a \rho e^{-\rho}=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{Z q^{2}}{4 \pi \varepsilon_{0} r}\right) r e^{-r / a}=-\frac{\hbar^{2}}{2 m a} \rho e^{-\rho}+\left(\frac{\hbar^{2}}{m a}-\frac{Z q^{2}}{4 \pi \varepsilon_{0}}\right) e^{-\rho} \\
=0 \\
\frac{\hbar^{2}}{m a}=\frac{Z q^{2}}{4 \pi \varepsilon_{0}} \rightarrow a=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{Z m q^{2}}=\frac{a_{0}}{Z} \\
E=-\frac{\hbar^{2}}{2 m a^{2}}=-\frac{Z q^{2}}{8 \pi \varepsilon_{0} a}=-\frac{Z^{2} q^{2}}{8 \pi \varepsilon_{0} a_{0}}
\end{gathered}
$$

2.2. How would you choose the parameters ε, t and φ for a 1D lattice described
 by

$$
E \psi_{n}=t e^{-i \varphi} \psi_{n-1}+\varepsilon \psi_{n}+t e^{+i \varphi} \psi_{n+1}
$$

so that the dispersion relation matches that of the differential equation

$$
E \psi=\frac{(p+q A)^{2}}{2 m} \psi, \quad p \equiv-i \hbar \frac{\partial}{\partial x}, A: \text { constant }
$$

for small values of ka.

SOLUTION:

Dispersion relation for differential equation obtained by inserting $\psi \sim e^{+i k x}$:

$$
E=\frac{(\hbar k+q A)^{2}}{2 m}
$$

Dispersion relation for matrix equation obtained by inserting $\psi \sim e^{+i k n a}$:

$$
E=t e^{-i \varphi} e^{-i k a}+\varepsilon+t e^{+i \varphi} e^{+i k a}=\varepsilon+2 t \cos (k a+\varphi)
$$

Using Taylor expansion for small ka,

$$
E \approx \varepsilon+2 t\left(1-\frac{(k a+\varphi)^{2}}{2}\right)=(\varepsilon+2 t)-t a^{2}\left(k+\frac{\varphi}{a}\right)^{2}
$$

Comparing with $\quad E=\frac{\hbar^{2}}{2 m}\left(k+\frac{q A}{\hbar}\right)^{2}$
we have

$$
\varepsilon+2 t=0, \quad t=-\frac{\hbar^{2}}{2 m a^{2}}, \quad \varphi=\frac{q A a}{\hbar}
$$

2.3. Consider a 1 D tight-binding model with a nearest neighbor coupling that alternates between two values t_{1} and t_{2} as shown.

The dispersion relation $\mathrm{E}(\mathrm{k})$ is given by

$$
E(k)=\varepsilon \pm \sqrt{t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2} \cos k b}
$$

Use this result to write down the eigenvalues of the (6x6) matrix, assuming $\varepsilon=0, t_{1}=2, t_{2}=1$

$$
\left[\begin{array}{cccccc}
\varepsilon & t_{1} & 0 & 0 & 0 & t_{2} \\
t_{1} & \varepsilon & t_{2} & 0 & 0 & 0 \\
0 & t_{2} & \varepsilon & t_{1} & 0 & 0 \\
0 & 0 & t_{1} & \varepsilon & t_{2} & 0 \\
0 & 0 & 0 & t_{2} & \varepsilon & t_{1} \\
t_{2} & 0 & 0 & 0 & t_{1} & \varepsilon
\end{array}\right]
$$

SOLUTION:

$$
\begin{aligned}
& E=\varepsilon \pm \sqrt{t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2} \cos \left[\begin{array}{lll}
-1 & 0 & +1
\end{array}\right] \cdot * 2 \pi / 3} \\
& =\varepsilon \pm \sqrt{t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2} *\left[\begin{array}{lll}
-1 / 2 & 1 & -1 / 2
\end{array}\right]} \\
& = \pm \sqrt{5+4 *\left[\begin{array}{lll}
-1 / 2 & 1 & -1 / 2
\end{array}\right]} \\
& = \pm \sqrt{3}, \pm 3, \pm \sqrt{3}
\end{aligned}
$$

2.4. Graphene has an atomic structure as shown.

$$
\begin{aligned}
& \vec{a}_{1}=a \hat{x}+b \hat{y} \\
& \vec{a}_{2}=a \hat{x}-b \hat{y}
\end{aligned}
$$

(a) Obtain the basis vectors for the reciprocal lattice.
(b) Draw the reciprocal lattice and show the first Brillouin zone.

SOLUTION:

(a) Since $\vec{a}_{1}=\hat{x} a+\hat{y} b \quad, \quad \vec{a}_{2}=\hat{x} a-\hat{y} b \quad, \quad \vec{a}_{3}=\hat{z} c$, we have

$$
\begin{array}{r}
\overrightarrow{\mathrm{A}}_{1}=\frac{2 \pi\left(\overrightarrow{\mathrm{a}}_{2} \times \hat{z}\right)}{\overrightarrow{\mathrm{a}}_{1} \cdot\left(\overrightarrow{\mathrm{a}}_{2} \times \hat{z}\right)}=\hat{\mathrm{z}}\left(\frac{\pi}{\mathrm{a}}\right)+\hat{\mathrm{y}}\left(\frac{\pi}{\mathrm{~b}}\right) \\
\overrightarrow{\mathrm{A}}_{2}=\frac{2 \pi\left(\hat{\mathrm{z}} \times \overrightarrow{\mathrm{a}}_{1}\right)}{\overrightarrow{\mathrm{a}}_{2} \cdot\left(\hat{z} \times \vec{a}_{1}\right)}=\hat{x}\left(\frac{\pi}{\mathrm{a}}\right)-\hat{y}\left(\frac{\pi}{\mathrm{~b}}\right)
\end{array}
$$

(b) Using these basis vectors we can construct the reciprocal lattice shown. The Brillouin zone is then obtained by drawing the perpendicular bisectors of the lines joining the origin $(0,0)$ to the neighboring points on the reciprocal lattice.

2.5. A sheet of graphene having a dispersion relation

$$
E\left(k_{x}, k_{y}\right)=\varepsilon \pm a t \sqrt{\beta_{x}^{2}+\beta_{y}^{2}}
$$

$$
\text { where } \quad \beta_{x}=k_{x}-k_{x 0}, \quad \beta_{y}=k_{y}-k_{y 0} \quad, \quad k_{x 0}=0, k_{y 0}=\frac{2 \pi}{3 b}
$$

is rolled up to form a nanotube with a circumferential vector along the y -direction: $\vec{c}=\hat{y} 2 b \mathrm{~m}, \mathrm{~m}$ being an integer. What is the dispersion relation $E_{v}\left(k_{x}\right)$ for subband v. Is there a subband v that has zero gap between the ' + ' and '-' branches?

SOLUTION:

Periodic boundary condition along circumference:

$$
\begin{aligned}
& \vec{k} \cdot \vec{c}=2 \pi v \rightarrow k_{y}=\frac{2 \pi v}{2 m b} \\
& E_{v}\left(k_{y}\right)=\varepsilon \pm a t \sqrt{k_{x}^{2}+\left(v \frac{\pi}{m b}-\frac{2 \pi}{3 b}\right)^{2}}
\end{aligned}
$$

Subband with $v=2 m / 3$ has zero gap, only possible if m is a multiple of 3 .

