The matrix equations we are trying to solve can be written explicitly as

$$
t \psi_{n-1}+\varepsilon \psi_{n}+t \psi_{n+1}=E \psi_{n} \quad \text { for } \mathbf{n}=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{N}
$$

These equations are satisfied by $\psi_{n}=\exp (+i k n a)$ and $\psi_{n}=\exp (-i k n a)$

$$
\text { and also by } \psi_{n}=\cos (k n a) \text { and } \psi_{n}=\sin (k n a)
$$

A. Periodic boundary condition: $\quad \psi_{0}=\psi_{N}, \psi_{N+1}=\psi_{1}$

Use $\quad \psi_{n}=\exp (+i k n a)$ and $\psi_{n}=\exp (-i k n a)$
with $\quad \exp (i k N a)=1 \quad \rightarrow \quad k N a=\underbrace{v}_{\text {integer }} 2 \pi$
B. Hardwall boundary conditions: $\quad \psi_{0}=0, \psi_{N+1}=0--\quad$ Why ? ${ }^{* *}$

Use $\quad \psi_{n}=\sin (k n a)$
with

$$
k(N+1) a=\underbrace{\nu}_{\text {int eger }} \pi
$$

** Dropping the boundary terms $t \psi_{0}$ and $t \psi_{N+1}$ amounts to setting the corresponding ψ_{0} and $\psi_{N+1}=0$.

