The matrix equations we are trying to solve can be written explicitly as

$$t\psi_{n-1} + \varepsilon\psi_n + t\psi_{n+1} = E\psi_n$$
 for $n = 1, 2, ..., N$

These equations are satisfied by $\psi_n = \exp(+ikna)$ and $\psi_n = \exp(-ikna)$ and also by $\psi_n = \cos(kna)$ and $\psi_n = \sin(kna)$

A. Periodic boundary condition: $\Psi_0 = \Psi_N$, $\Psi_{N+1} = \Psi_1$

Use
$$\psi_n = \exp(+ikna)$$
 and $\psi_n = \exp(-ikna)$
with $\exp(ikNa) = 1 \rightarrow kNa = \underbrace{v}_{int \ eger} 2\pi$

B. Hardwall boundary conditions: $\psi_0 = 0$, $\psi_{N+1} = 0$ --- Why ? **

Use
$$\psi_n = \sin(kna)$$

with $k(N+1)a = \underbrace{v}_{int \ eger} \pi$

** Dropping the boundary terms $t\psi_0$ and $t\psi_{N+1}$ amounts to setting the corresponding ψ_0 and $\psi_{N+1} = 0$.