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ECE 659, PRACTICE EXAM II  
Actual Exam 

Friday, Feb.21, 2014, FNY B124, 330-420PM 
 

CLOSED BOOK 
 

Useful relation h(

k )⎡⎣ ⎤⎦ = Hnm[ ] e+i


k .(rm−

rn )

m
∑  

Actual Exam will have five questions. 
 

The following questions have been chosen to stress 
what I consider the most important concepts / skills 

 that you should be clear on. 
 

2.1. Hydrogen	
  atom	
  wavefunctions	
  (QTAT,	
  Ch.2)	
  **	
  
2.2. Self-­‐consistent	
  field	
  (QTAT,	
  Ch.3)	
  **	
  
2.3. Dispersion	
  relation	
  for	
  differential	
  equation	
  (Video	
  L1.3,	
  Tutorial	
  1.1)	
  
2.4. Dispersion	
  relation	
  for	
  1D	
  matrix	
  equation	
  	
  (Video	
  L1.3,	
  Tutorial	
  1.1)	
  
2.5. Dispersion	
  relation	
  for	
  2D	
  lattice	
  	
  (Video	
  L1.4,	
  Tutorial	
  1.1)	
  
2.6. Dispersion	
  relation	
  for	
  1D	
  matrix	
  equation	
  with	
  basis	
  (Video	
  L1.5)	
  
2.7. Counting	
  states	
  for	
  a	
  discrete	
  lattice	
  	
  (Tutorial	
  1.2,1.3)	
  **	
  
2.8. Graphene:	
  Atomistic	
  model	
  to	
  “effective	
  mass”	
  model	
  	
  

(Video L1.6, Tutorial 1.4) 
2.9. Reciprocal	
  lattice,	
  Brillouin	
  zone,	
  counting	
  valleys	
  (QTAT,	
  Ch.5,	
  6)	
  
2.10. Subbands	
  (QTAT,	
  Ch.6)	
  
 

** It may be instructive to try out MATLAB-based numerical examples, 
please see “MATLAB-based homework” posted on website. 

 
Text:   Lecture 18, LNE 

(Lessons from Nanoelectronics), World Scientific (2012) 
Reference:   Chapters 2-7, QTAT 

(Quantum Transport: Atom to Transistor), Cambridge (2005) 
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2.1. 

(a) Show that the Schrodinger equation for a hydrogen atom 

Eψ (

r ) = −


2

2m
∇2 −

q
2

4πε0r

⎛

⎝
⎜

⎞

⎠
⎟ψ (

r )

     (1a) 
 

  (1b)
 

 

is satisfied by a solution of the form ψ (r ) = R(r)Y
m
(θ,φ)  provided 

 
E R(r) = − 

2

2m
d2

dr2
+ 2
r
d
dr

⎛

⎝⎜
⎞

⎠⎟
− q2

4πε0r
+ 

2l(l +1)
2mr2

⎛

⎝
⎜

⎞

⎠
⎟ R(r)    (2a) 

 

Note:  Y
m (θ ,φ)  are the spherical harmonics which satisfy the differential equation: 

1

sinθ

∂

∂θ
sinθ

∂

∂θ

⎛
⎝⎜

⎞
⎠⎟
+

1

sin
2θ

∂2

∂φ2

⎛

⎝
⎜

⎞

⎠
⎟ Y

m
= − ( +1)Yl

m

 (2b)

 

 

SOLUTION: 
 

Substituting ψ (

r ) = R(r)Y

m
(θ,φ)     into (1) and making use of (2b), 

 

 
E R(r)Y

m (θ ,φ) = − 
2

2m
d2

dr2
+ 2
r
d
dr

⎛

⎝⎜
⎞

⎠⎟
− q2

4πε0r
+ 

2l(l +1)
2mr2

⎛

⎝
⎜

⎞

⎠
⎟ R(r)Y

m (θ ,φ)   

Canceling  Y
m (θ ,φ)  we have (2a). 

 

 (b) Show that a solution of the form R(r) = f (r)
r

 

satisfies (2a) provided 

 
 
E f (r) = − 

2

2m
d2

dr2
− q2

4πε0r
+ 

2 (+1)
2mr2

⎛

⎝⎜
⎞

⎠⎟
f (r)     (3) 

 

SOLUTION: 

� 

∇2 ≡
∂2

∂r2
+
2

r

∂
∂r

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 

⎟ ⎟ 
+
1

r
2

1

sinθ
∂
∂θ

sin θ
∂
∂θ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

1

sin
2θ

∂2

∂φ2
⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 

⎟ ⎟ 
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We know that 

d2

dr2
+ 2
r
d
dr

⎛

⎝⎜
⎞

⎠⎟
f (r)
r

= d
dr

+ 2
r

⎛
⎝⎜

⎞
⎠⎟
d
dr

f (r)
r

= d
dr

+ 2
r

⎛
⎝⎜

⎞
⎠⎟

f '
r
− f
r2

⎛
⎝⎜

⎞
⎠⎟  

= f "
r
− f '
r2

− f '
r2

+ 2 f
r3

+ 2 f '
r2

− 2 f
r3

= f "
r

 

Now substituting R(r) = f(r)/r in (2a), we have (3).	
  

(c) We could solve (3) with   =0 for the “s” levels, with  =1 for the “p” levels with  =2 

for the “d” levels etc. But let us focus only on the first one ( =0). Show that a solution of 

the form f (r) = r e−r /a0  satisfies (3) provided 
 
a0 =

4π ε0 
2

mq2
 and that the corresponding 

energy E is equal to q2

8π ε0 a0
 

SOLUTION:  For 1s level,  = 0. Substituting  f (r) = re−r /a0  into (3) 

 
E re−r /a0 = − 

2

2m
d2

dr2
− q2

4πε0r
⎛

⎝⎜
⎞

⎠⎟
re−r /a0  

 
= − 

2

2ma0
d2

dρ2
− q2

4πε0ρ
⎛

⎝⎜
⎞

⎠⎟
ρe−ρ , ρ ≡ r / a0  

 
= − 

2

2ma0
d
dρ

⎛

⎝⎜
⎞

⎠⎟
(1− ρ)e−ρ − q2

4πε0
e−ρ   

 
= 2

2ma0
(2 − ρ)e−ρ − q2

4πε0
e−ρ   

 

Ea0ρe
−ρ = − 

2

2m
d2

dr2
− q2

4πε0r
⎛

⎝⎜
⎞

⎠⎟
re−r /a0 = − 2

2ma0
ρe−ρ + 2

ma0
− q2

4πε0

⎛

⎝⎜
⎞

⎠⎟

=0
 

e−ρ   

 

2

ma0
= q2

4πε0
→ a0 =

4πε0
2

mq2
  

 
E = − 2

2ma0
2 = − q2

8πε0a0   
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2.2. Self-consistent field 

(a) Suppose we write the Schrodinger equation for a helium atom as 

(atomic number Z=2) 

Eψ (r ) = − 
2

2m
∇2 − Zq2

4πε0r
⎛

⎝⎜
⎞

⎠⎟
ψ (r )

     
(4) 

Proceeding as in Problem 2.1, with  =0 for the “s” levels , we obtain the radial equation  

E f (r) = − 
2

2m
d2

dr2
− Z q2

4πε0r
⎛

⎝⎜
⎞

⎠⎟
f (r)  

 
Assuming a solution of the form f (r) = r e−r/a  find ‘a’ and the corresponding energy E. 
 
SOLUTION: 
 
Proceeding as in Problem 2.1c, we now obtain 
 

2

ma
= Z q2

4πε0
→ a = 4πε0

2

Z mq2
= a0
Z

 

 

E = − 2

2ma2
= − Z q2

8πε0a
 

 
 
 
(b) Based on Part (a), what would you predict the energy of an 1s level in Helium to be, 
given that the energy of an 1s level in Hydrogen is -13.6 eV. 
Is this result correct ? Explain. 
 
SOLUTION: 
 
Since Z=2 for Helium, the energy should be 4 times that of Hydrogen, or -53.4 eV. 
 
This result is not correct because it does not include the self-consistent field due to the 
other electron in Helium. The measured ionization potential for Helium is ~ -25 eV, 
which is about 30eV higher, due to the repulsive potential from the other electron. 
 
However, the second ionization potential needed to turn He+ into He++ is approximately 
~- -53 eV. 
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2.3. Consider a pair of coupled differential equations of the form  ( p ≡ − i

∇ ) : 

 

 
E

ψ (x, y)
ϕ(x, y)
⎧
⎨
⎩

⎫
⎬
⎭
=

ε ν0(px − ipy )
v0(px + ipy ) − ε
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ψ (x, y)
ϕ(x, y)
⎧
⎨
⎩

⎫
⎬
⎭  

 
Find the dispersion relation E(kx,ky ) ? What are the eigenfunctions ? 
 
 
SOLUTION: 

Solutions can be written in the form 
ψ (x, y)
ϕ(x, y)
⎧
⎨
⎩

⎫
⎬
⎭
=

ψ 0

ϕ0
⎧
⎨
⎩

⎫
⎬
⎭
ei(kxx+kyy)  

 
Substituting into original differential equation 
 

 
E

ψ 0

ϕ0
⎧
⎨
⎩

⎫
⎬
⎭
=

ε − iv0(ikx + ky )
−iv0(ikx − ky ) − ε
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ψ 0

ϕ0
⎧
⎨
⎩

⎫
⎬
⎭  

 
so that the eigenvalues are given by 
 

E = ± ε 2 + 2ν0
2(kx

2 + ky
2 )  

 
and the eigenvectors can be written as (please check) 
 

c
s

⎧
⎨
⎩

⎫
⎬
⎭
and

−s*
c*

⎧
⎨
⎩

⎫
⎬
⎭

 

 

where 

c ≡ cosθ
2
e− iϕ /2 , s ≡ sinθ

2
e+ iϕ /2 ,

θ ≡ tan−1
ν0 kx

2 + ky
2

ε
, ϕ ≡ tan−1

ky
kx

 

  



 6 
 

2.4. How would you choose 
the parameters ε , t and ϕ  
for a 1D lattice described 
by 
 
          Eψ n = t e − iϕψ n−1 + εψ n + t e

+ iϕψ n+1  
 
so that the dispersion relation matches that of the differential equation 

          Eψ = (p + qA) 2

2m
ψ , p ≡ − i ∂

∂x
, A : constant  

 
for small values of ka. 
 
 
SOLUTION: 
 
Dispersion relation for differential equation obtained by inserting ψ ~ e+ikx : 

 
 
E = (k + qA) 2

2m
 

Dispersion relation for matrix equation obtained by inserting ψ ~ e+ikna : 
 
E = t e − iϕ e− ika + ε + t e + iϕ e+ika = ε + 2t cos(ka +ϕ )  

 
Using Taylor expansion for small ka, 

 

E ≈ ε + 2t 1− (ka +ϕ )
2

2
⎛

⎝⎜
⎞

⎠⎟
= (ε + 2t) − ta2 k + ϕ

a
⎛
⎝⎜

⎞
⎠⎟
2

 

 

Comparing with 
 
E = 2

2m
k + qA


⎛
⎝⎜

⎞
⎠⎟
2

 

 

we have 
 
ε + 2t = 0, t = − 2

2ma2
, ϕ = qAa


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2.5.  The E(kx,ky) relation for some solids is often written in the form 
 
 E = E0 − 2V (coskxa + cosk ya + 2α cosk xa cos kya)  
where α  is a dimensionless number. How would you choose the nearest neighbor and next 
nearest neighbor overlap matrix elements in a square lattice of side 'a' so as to correspond to 
this dispersion relation ? 

 
 
 
 
 
 
 
 
 
SOLUTION: 
 

E = ε − t eikxa + e−ikxa + eikya + e−ikya( )
− t ' ei(kx+ky )a + ei(kx−ky )a + ei(−kx+ky )a + ei(−kx−ky )a( )

 

 
 = ε − 2t coskxa + coskya( )− 2t ' eikxa coskya + e−ikx a coskya( )  

 
 = ε − 2t coskxa + coskya( )− 4t ' coskyacoskya  
 
Comparing,  
 
 ε = E0 , t =V , t '=Vα   

- t

- t ' Nearest neighbor overlap         : - t

Next nearest neighbor overlap : - t'
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2.6. Consider a 1D tight-binding model with a nearest neighbor coupling that alternates 
between two values t1 and t2 as shown. 
 
 
 
 
 
Find the dispersion relation E(k) and eigenvectors for a given value of k. 
 
 
SOLUTION: 
 

h(k) =
0 t2
0 0
⎡

⎣
⎢

⎤

⎦
⎥ e

−ikb +
ε t1
t1 ε
⎡

⎣
⎢

⎤

⎦
⎥ +

0 0
t2 0
⎡

⎣
⎢

⎤

⎦
⎥ e

+ikb

   
=

ε t1 + t2e
−ikb

t1 + t2e
+ikb ε

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

 
 

E(k) = ε ± (t1 + t2e
+ikb ) (t1 + t2e

−ikb )  
 

= ε ± t1
2 + t2

2 + 2t1t2 coskb  
 
Eigenvectors can be written as (please check)  
 

1
2

1

e+iϕ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
and 1

2

−1

e+iϕ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, ϕ ≡ tan−1 t2 sinkb

t1 + t2 coskb
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2.7. Use the principles of bandtructure to write down the eigenvalues of  these 6x6 
matrices 
 
(a)  
 

ε t 0 0 0 t
t ε t 0 0 0
0 t ε t 0 0
0 0 t ε t 0
0 0 0 t ε t
t 0 0 0 t ε

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
 
(b)  

 
ε t 0 0 0 0
t ε t 0 0 0
0 t ε t 0 0
0 0 t ε t 0
0 0 0 t ε t
0 0 0 0 t ε

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
 
(c) 
 

 

ε t1 0 0 0 t2
t1 ε t2 0 0 0
0 t2 ε t1 0 0
0 0 t1 ε t2 0
0 0 0 t2 ε t1
t2 0 0 0 t1 ε

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 
SOLUTION: 

 (a)  ε + 2t cos[−3 − 2 −1 0 +1 + 2].*2π / 6  

  -2.0000   -1.0000   -1.0000    1.0000  1.0000    2.0000 

(b)  ε + 2t cos[1 2 3 4 5 6].*π / 7  

  -1.8019   -1.2470   -0.4450    0.4450  1.2470    1.8019 

(c)  ε ± t1
2 + t2

2 + 2t1t2 cos[−1 0 +1].*2π / 3   

  -2.0000   -1.3229   -1.3229    1.3229  1.3229    2.0000 
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2.8.  Graphene has an atomic structure as shown.   
a1 = ax̂ + bŷ  

Assume a nearest neighbor tight-binding model with  
a2 = ax̂ − bŷ  

 

� 

Hn,n = ε  
        
  

� 

Hn,m = t  if n, m are neighboring atoms 
 
  

� 

Hn,m = 0 if n, m are NOT nearest neighbors 
 
Show that E(kx , ky) can be written as 

E(kx ,ky ) = ε ± at βx
2
+ βy

2

 
where

  

βx = kx − kx0, βy = ky − ky0  , kx0 = 0, ky0 =
2π

3b  
SOLUTION: 
 
 h (kx , ky ) =  

 

 
 

 

 

= ε h0
*

h0 ε
⎡

⎣
⎢

⎤

⎦
⎥ ,   

where  h0 ≡ t + te+i

k . a1 + te+i


k . a2    = t (1+ 2eikxa coskyb)  

 
The two branches of the dispersion relation are given by the eigenvalues of h (kx , ky): 
 

 
E(kx,ky ) = ε ± h0(kx,ky )  

 
Expand h0 around one of the valleys like (kx0 , ky0) where h0 = 0. 

∂h0
∂kx

⎛
⎝⎜

⎞
⎠⎟ kx=0
ky=2π /3b

= 2t iaeikxa coskyb( )kx=0
ky=2π /3b

= − iat  

 

∂h0
∂ky

⎛

⎝
⎜

⎞

⎠
⎟
kx=0
ky=2π /3b

= −2t beikxa sinkyb( )kx=0
ky=2π /3b

= − 3 t b = − t a  

ε t

t ε

⎡

⎣
⎢

⎤

⎦
⎥

 

0 0

t 0

⎡

⎣
⎢

⎤

⎦
⎥e

+i

k .

a
1

 

0 0

t 0

⎡

⎣
⎢

⎤

⎦
⎥e

+i

k .

a
2

 

e
−i

k .

a
2

0 t

0 0

⎡

⎣
⎢

⎤

⎦
⎥

 

e
−i

k .

a
1

0 t

0 0

⎡

⎣
⎢

⎤

⎦
⎥

+

+ +

+
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Hence h0(kx,ky ) ≈ − iat βx − ta βy = − iat (βx + i βy )  
h0(kx,ky ) = at βx

2 + βy
2  

so that  
E(kx ,ky ) = ε ± at βx

2
+ βy

2  

 
2.9. How many conduction valleys does graphene have? Explain. 
 
Conduction valleys occur around the zeros of h0 (kx , ky) given by 

kx0 = 0, ky0 = ± 2π
3b

 

and kx0 = ± π
a
, ky0 = ± π

3b
 

 
The number of valleys depends on how many are contained within a Brillouin zone. To 
construct the Brillouin zone, first step is to find the reciprocal lattice vectors from the real 
space lattice vectors: 

  

� 

 
A 1 =

2π
 
a 2 x
 
a 3( )

 
a 1 ⋅
 
a 2 x
 
a 3( )  ,    

� 

 
A 2 =

2π
 
a 3 x
 
a 1( )

 
a 2 ⋅
 
a 3 x
 
a 1( )    

 
Since   

� 

 
a 1 = ˆ x a + ˆ y b ,

 
a 2 = ˆ x a − ˆ y b ,

 
a 3 = ˆ z c , we have 

           

� 

 
A 1 =

2π
 
a 2 x ˆ z ( )

 
a 1 ⋅
 
a 2 x ˆ z ( )

= ˆ x 
π
a

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + ˆ y 

π
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
  

  

� 

 
A 2 =

2π ˆ z x
 
a 1( )

 
a 2 ⋅ ˆ z x

 
a 1( )

= ˆ x 
π
a

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − ˆ y 

π
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

   
 
Using these basis vectors we can 
construct the reciprocal lattice 
shown. The Brillouin zone is then 
obtained by drawing the 
perpendicular bisectors of the 
lines joining the origin (0,0) to the 
neighboring points on the 
reciprocal lattice. 
 
Note that the valleys occur st the 
corners of the Brillouin zone so 
that only one-thirs of each valley 
is contained within a Brillouin 
zone. Hence the total number of valleys = 6 x (1/3) = 2. 
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2.10. (a) A sheet of graphene having a dispersion relation 

E(kx ,ky ) = ε ± at βx
2
+ βy

2

 

where  βx = kx − kx0, βy = ky − ky0  , 
kx0 = 0, ky0 =

2π

3b  
 
is rolled up to form a nanotube with a circumferential vector along the x-direction: 
c = x̂ 2a m , m being an integer. What is the dispersion relation Eν (ky )  for subband ν . Is 
there a subband ν  that has zero gap between the ‘+’ and ‘-‘ branches? 
 
SOLUTION: Periodic boundary condition along circumference: 


k. c = 2πν → kx =

2πν
2ma

 

Eν (ky ) = ε ± at ν π
ma

⎛
⎝⎜

⎞
⎠⎟
2
+ βy

2 , βy ≡ ky −
2π
3b

 

 
Subband with ν = 0  has zero gap. 
 
 

 (b) A sheet of graphene is rolled up to form a nanotube with a circumferential vector 
along the y-direction: c = ŷ 2b m , m being an integer. What is the dispersion relation 
Eν (kx )  for subband ν . Is there a subband ν  that has zero gap between the ‘+’ and ‘-‘ 
branches? 
 
SOLUTION: Periodic boundary condition along circumference: 


k. c = 2πν → ky =

2πν
2mb

 

Eν (ky ) = ε ± at kx
2 + ν π

mb
− 2π
3b

⎛
⎝⎜

⎞
⎠⎟
2

 

 
Subband with ν = 2m / 3  has zero gap, only possible if m is a multiple of 3. 

 


