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Surface states in topological insulators can be understood based on the well-known Shockley model, a
one-dimensional tight-binding model with two atoms per elementary cell, connected via alternating tunneling
amplitudes. We generalize the one-dimensional model to the three-dimensional case representing a sequence
of layers connected via tunneling amplitudes t , which depend on the in-plane momentum p = (px,py).
The Hamiltonian of the model is a 2 × 2 matrix with the off-diagonal element t(k, p) depending also on the
out-of-plane momentum k. We show that the existence of the surface states depends on the complex function
t(k, p). The surface states exist for those in-plane momenta p where the winding number of the function t(k, p) is
nonzero when k is changed from 0 to 2π . The sign of the winding number determines the sublattice on which the
surface states are localized. The equation t(k, p) = 0 defines a vortex line in the three-dimensional momentum
space. Projection of the vortex line onto the space of the two-dimensional momentum p encircles the domain
where the surface states exist. We illustrate how this approach works for a well-known model of a topological
insulator on the diamond lattice. We find that different configurations of the vortex lines are responsible for the
“weak” and “strong” topological insulator phases. A topological transition occurs when the vortex lines reconnect
from spiral to circular form. We apply the Shockley model to Bi2Se3 and discuss applicability of a continuous
approximation for the description of the surface states. We conclude that the tight-binding model gives a better
description of the surface states.
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I. INTRODUCTION

Recent theoretical discovery1–11 of topological insulators
(TIs) has stimulated active research in the field.12–14 The
key idea is that a time-reversal-invariant band Hamiltonian
with a finite gap over the Brillouin zone (BZ) can be
characterized by the topological indices Z2.2–4 The topological
indices distinguish trivial and nontrivial phases, which usually
arise due to strong spin-orbit coupling in the system.1,6 The
topological Z2 indices are robust to moderate perturbations
of the Hamiltonian and can change only if the energy gap
is closed.2–4 Since the topological indices of vacuum and TIs
are different,12,15 the boundary of TIs should carry gapless
modes,16,17 similar to the chiral edge modes in the quantum
Hall phases.18 Because of the bulk-boundary correspondence,
the gapless surface states are topologically protected against
moderate perturbations.

Theory of topological surface states has been studied
in a number of works both in the tight-binding19,20 and
continuous models.21–26 Many papers focused on the bulk-
boundary correspondence, that is, on proving that a sample
with nontrivial topological numbers in the bulk should possess
gapless excitations on the surface. The method of topological
invariants, although being very powerful, is often not physi-
cally transparent and not intuitive about the exact mechanism
by which the topological numbers are related to the surface
states.

The purpose of our paper is to show that formation of
the surface states in TIs can be understood based on the
simple and well-known Shockley model27,28 of the edge states.
The Shockley model was also applied to surface states in
topological superconductors29,30; however, we focus only on
surfaces states in semiconductors. In Sec. II we review the
one-dimensional (1D) Shockley model consisting of a chain
of atoms connected via alternating tight-binding hopping

amplitudes t1 and t2. When a boundary is introduced in the
system, for example, by breaking the bond t2, existence of the
edge states is governed by the Shockley criterion. The edge
state exists if the greater tight-binding amplitude is broken
at the boundary, that is, if |t2| > |t1|, and it is localized on
one sublattice. At the end of Sec. II A we show how the
Shockley criterion can be formulated in terms of a topological
winding number for the off-diagonal matrix element of the bulk
Hamiltonian, thus connecting bulk properties with the surface
states as discussed in Refs. 20 and 32–35. In Sec. III A we
generalize the model to three dimensions (3D) by replacing
atoms by the two-dimensional (2D) layers parallel to the
xy plane and assigning the in-plane momentum dependence
p = (px,py) to the interlayer tunneling amplitudes t1 and t2.
In Sec. III C we study vortex lines in the 3D momentum
space,31,36 where the off-diagonal matrix element of the bulk
Hamiltonian vanishes. We show that the projection of the 3D
vortex lines onto the 2D in-plane momentum space encircles
the domain where the surface states exist. We observe that the
tight-binding TI Hamiltonians studied in Refs. 2, 3, 5, and 19
have the Shockley-model structure and can be understood
using our approach. In Sec. IV A we illustrate the Shockley
mechanism for the Fu-Kane-Mele model on the diamond
lattice.3 We show how the surface states evolve when the
parameters of the Hamiltonian vary. In Sec. IV B we show that
reconnection of the vortex lines represents a phase transition
in the TI Hamiltonian. The spiral vortex lines correspond to
a phase with an even number of Dirac cones (the “weak”
TI phase), while the circular vortex lines correspond to a
phase with an odd number of Dirac cones (the “strong” TI
phase). In Sec. V we apply the Shockley model to describe the
surface states in Bi2Se3, which is formed by the quintuple
layers of Bi and Se.21,22,37–40 The electronic structure of
this material near the Fermi level can be well described
by the hybridized pz orbitals located near the outer layers
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of the quintuplets.22,37 Thus, the Shockley model with the
intraquintuplet and interquintuplet tunneling amplitudes t1 and
t2 gives a plausible description of this material. Surface states
have complementary properties depending on how the crystal
is terminated.37 Breaking the t2 amplitude introduces a cut
between the quintuplets. In this case, the surface states have a
Dirac cone in the Brillouin zone (BZ) center.38,39 Breaking t1
introduces a cut inside the quintuplet. In this case, the Shockley
model predicts the surface states with the Dirac cones on the
boundary of the BZ. The similar effect was considered for the
Bi1−xSbx alloy in Ref. 41. In Sec. V B we discuss whether
a continuous approximation for the TI Hamiltonian gives a
good description of the surface states. We conclude that the
tight-binding models are better suitable for the description of
the surface states. Then, in Sec. VI, we generalize the Shockley
model by including additional tight-binding amplitudes. For
all these models, we find that the edge state is always localized
on one sublattice, which is rarely mentioned in the TI literature.

II. 1D SHOCKLEY MODEL

A. The original Shockley model

In this section we briefly review the Shockley model27,28

and its properties. Let us consider a 1D linear chain of atoms
shown in Fig. 1(a). The unit cell contains two atoms labeled
as A and B, which are connected via the alternating nearest-
neighbor complex tight-binding amplitudes t1 and t2. So, the
Hamiltonian of the model is

H =
∑

z

�†(z)[U�(z) + V �(z − 1) + V †�(z + 1)], (1)

U =
(

0 t∗1
t1 0

)
, V =

(
0 t∗2
0 0

)
. (2)

Here z is the integer coordinate of the unit cell, t1 and t2 are
the intracell and the intercell tunneling amplitudes, and �(z)
is the spinor

�(z) =
(

ψa(z)
ψb(z)

)
, (3)

where ψa(z) and ψb(z) are the wave functions on the sites A

and B. In the Fourier representation �(z) = ∫ 2π

0
dk
2π

eikz �(k),

the Hamiltonian is

H =
∫ 2π

0

dk

2π
�†(k) H (k) �(k), (4)

where

H (k) = U + V e−ik + V †eik =
(

0 t∗(k)
t(k) 0

)
(5)

is a 2 × 2 matrix acting in the AB sublattice space, and

t(k) = t1 + t2e
ik = t1 + t2q, q = eik. (6)

Then, the Schrödinger equation(
0 t∗(k)

t(k) 0

) (
ψa

ψb

)
= E

(
ψa

ψb

)
(7)

gives two particle-hole symmetric energy bands with the
eigenvalues E(k) and eigenfunctions �(k),

E(k) = ±|t(k)|, (8)

�(k) = 1√
2

(
ei arg[t(k)]

±1

)
. (9)

The energy spectrum has a gap if |t1| �= |t2|, as illustrated in
Fig. 1(b) for real t1 and t2. Notice that the bulk wave function
(9) has equal probabilities on both sublattices. In contrast,
as we shall see below, the wave function of an edge state is
localized only on one sublattice.

A boundary to the 1D lattice can be introduced by cutting
either the t1 or t2 link. Let us consider a half-infinite system
for z � 1, z = 1, 2, 3, . . . , corresponding to the cut of the
t2 link. In this case, atom A is exposed on the edge, as
shown in Fig. 1(a). Mathematically, the boundary condition
is introduced by requiring that the wave function vanishes at
the fictitious site z = 0 and at infinity

ψa(0) = 0, ψb(0) = 0, (10)

ψa(+∞) = 0, ψb(+∞) = 0. (11)

It is shown in Appendix A that the edge state can exist only
for E = 0. So we substitute E = 0 into Eq. (7) and find that

FIG. 1. (Color online) (a) 1D chain of atoms with alternating tunneling amplitudes t1 and t2 representing the Shockley model [Eq. (1)].
(b) The bulk energy spectrum of the system [Eq. (8)] with a nonzero gap for |t1| �= |t2|. (c) The exponentially decaying edge state [Eq. (18)]
for |t1|/|t2| < 1 with the penetration depth ξ = 1/ln|t2/t1|.
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FIG. 2. (Color online) Topological formulation of the Shockley
criterion (19). (a) and (b) compare the two cases, where the root q0

(the red dot) lies inside or outside the unit circle C = {q = eik, k ∈
(0,2π )}. An edge state exists for (a) |q0| < 1 and does not exist for (b)
|q0| > 1. An alternative formulation in terms of the winding number
(20) is illustrated in (c) and (d). The edge state (c) exists if the winding
number is nonzero and (d) does not exist if the winding number is
zero.

the wave functions on the A and B sublattices decouple

t(k) ψa = (t1 + t2e
ik) ψa = 0, (12)

t∗(k) ψb = (t∗1 + t∗2 e−ik) ψb = 0, (13)

where k is now a complex wave number, so t∗(k) is not a
complex conjugate of t(k). In the real space, Eq. (13) can be
written as a recursion relation

ψb(z)t∗1 + ψb(z − 1)t∗2 = 0 (14)

for z � 1. Using this recursion relation and the boundary
condition ψb(0) = 0, we find that ψb(z) vanishes for z � 1.
In contrast, the real-space representation of Eq. (12),

ψa(z)t1 + ψa(z + 1)t2 = 0 (15)

for z � 1 does not involve ψa(0) from Eq. (10). So, the solution
on the A sublattice is

ψa(z) = qz−1
0 , (16)

where q0 is obtained by solving the equation t(k0) = 0,
following from Eq. (12) for a complex wave number k0,

q0 = eik0 = − t1

t2
. (17)

Depending on whether |q0| < 1 or |q0| > 1, the solution in
Eq. (16) either satisfies the condition (11) at infinity or not. If
|t2| > |t1|, then |q0| < 1, as shown in Fig. 2(a), and the wave
function (16) exponentially decays at z → +∞, as shown in
Fig. 1(c), so the edge state exists. In contrast, if |t1| > |t2|,
then |q0| > 1, as shown in Fig. 2(b), and the wave function
(16) exponentially grows at z → +∞, so an edge state does
not exist. To summarize, by solving Eqs. (12) and (13) with
the appropriate boundary conditions (10) and (11), we obtain
the zero-energy edge state

�0(z) =
(

1
0

)
qz−1

0 , E0 = 0 , (18)

which exists only if

|q0| = |t1|
|t2| < 1. (19)

Equation (19) constitutes the Shockley criterion: In the 1D
tight-binding model with alternating tunneling amplitudes
given by Hamiltonian (1), the edge state exists if the bond
of the greater magnitude is broken at the boundary.

Let us now consider an alternative formulation of the
Shockley criterion (19) in terms of the winding number

W = 1

2πi

∫ 2π

0
dk

d

dk
ln t(k). (20)

The winding number W represents the phase change of the
complex function t(k) when the real variable k changes from
0 to 2π . The function t(k) also defines a closed contour

C ′ = {t(k) = t1 + t2e
ik, k ∈ (0,2π )} (21)

in the 2D plane of (Re t,Im t), as shown in Figs. 2(c) and 2(d).
If |q0| < 1, or equivalently |t2| > |t1|, the contour C ′ winds
around the origin (red dot), as shown in Fig. 2(c). If |q0| > 1,
or equivalently |t1| > |t2|, the contour C ′ does not wind around
the origin, as shown in Fig. 2(d). So the Shockley criterion (19)
can be formulated in terms of the winding number

W =
{

1, edge state exists,
0, edge state does not exist. (22)

This formulation was discussed in a number of papers.20,33–35

While the winding number (20) is calculated using the
off-diagonal element t(k) of the Hamiltonian (5), it can
be equivalently expressed through the eigenfunctions �(k)
defined in Eq. (9),

WZ = 1

πi

∫ 2π

0
dk �†(k)∂k�(k). (23)

This expression is called the Zak phase34 (up to π in the
denominator and related to the Berry phase) and is an
alternative representation of the winding number (20).

B. On-site energies in the 1D Shockley model

Let us further generalize the model and include on-site
energies εa and εb in Hamiltonian (5),

H (k) =
(

εa t∗(k)
t(k) εb

)
. (24)

As shown in Eq. (18) for εa = εb = 0, the edge state solution
is localized on the A sublattice. Therefore, adding the on-site
energy εa simply shifts the energy of the edge state without
changing its wave function irrespective of εb. So, if criterion
(19) is satisfied, the edge state is localized on the A sublattice
and has the energy

E0 = εa. (25)

It is also convenient to transform the Hamiltonian to the
symmetrized form H ,

H (k) = εa + εb

2
+

(
h t∗(k)

t(k) −h

)
, h = εa − εb

2
. (26)

The offset (εa + εb)/2 just uniformly shifts all energies and
will be omitted in the rest of the paper, so the Hamiltonian
becomes

H (k) =
(

h t∗(k)
t(k) −h

)
. (27)
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FIG. 3. (Color online) 3D generalization of the Shockley model
described by Hamiltonian (30) with h( p) defined by Eq. (33). The
arrows show the staggered direction of the Rashba vector n.

The bulk spectrum of the Hamiltonian (27) is generally gapped

E(k) = ±
√

h2 + |t(k)|2. (28)

By denoting the Pauli matrices acting in the AB sublattice
space as τ = (τx,τy,τz), Hamiltonian (27) can be written as

H (k) = τ · d(k), d(k) = [Ret(k),Imt(k),h]. (29)

When k changes from 0 to 2π , the vector d(k) traces a closed
contour 	 in the corresponding 3D space. The criterion (22) is
equivalent to the following statement: The edge state exists if
the projection of the contour 	 onto the xy plane encloses the
origin.20 Note that the Zak phase (23) is equal to WZ = 
/2π ,
where 
 is the solid angle of the contour 	 viewed from the
origin. For h = 0, the contour 	 lies in the xy plane, so 
 = 2π

and WZ = 1. However, for h �= 0, the contour 	 lies off the
xy plane, and 
 is a fraction of 2π . So, in general, the Zak
phase WZ is fractional and does not give a number of the edge
states, whereas the criterion (22) remains applicable.

III. 3D SHOCKLEY-LIKE MODEL

A. Generalization to the 3D case

Let us generalize Hamiltonian (27) to the 3D case. Instead
of alternating atomic sites, let us consider a sequence of
alternating layers A and B perpendicular to the z direction,
as shown in Fig. 3. Now, all parameters of Hamiltonian (27)
acquire dependence on the in-plane momentum p = (px,py),

H =
(

h( p) t∗(k, p)
t(k, p) −h( p)

)
. (30)

The off-diagonal matrix element

t(k, p) = t1( p) + t2( p)eik (31)

describes the p-dependent interlayer tunneling amplitudes,
while h( p) represents the intralayer Hamiltonian. Throughout
this paper we denote the in-plane momentum as p = (px,py)
and the out-of-plane momentum in the z direction as k.42

For a fixed value of the in-plane momentum p, Hamiltonian
(30) reduces to the 1D model (27), for which the edge state was
studied in Sec. II. The surface states exist for those in-plane
momenta p where criterion (19) is satisfied. The surface states
are localized on the A sublattice, and the energy spectrum
E0( p) of the surface states is determined by the in-plane
Hamiltonian h( p),

E0( p) = h( p). (32)

In our construction of the generalized Shockley model,
we put a restriction that the diagonal element h( p) does not
depend on k. Physically, it means that tunneling amplitudes
connect only different sublattices A and B, but not A to A

or B to B. Thus, Hamiltonian (30) is not the most general
3D Hamiltonian, however it applies to many models in the
literature.

B. Spin-orbit interaction

So far we have not considered spin of the electron. After
including the spin variable in Hamiltonian (30), the terms h( p)
and t(k, p) become 2 × 2 matrices acting in the spin-1/2 space,
and the full Hamiltonian becomes a 4 × 4 matrix. We assume
that t(k, p) is proportional to the unit 2 × 2 matrix, but h( p)
may include the Pauli matrices σ acting on the spin variable. In
vicinity of the time-reversal-invariant momentum point p = 0,
the Hamiltonian h( p) must be bilinear in p and the spin-Pauli
matrices σ . For example, h( p) can have the Rashba spin-orbit
coupling form

h( p) = v(σxpy − σypx) = v(σ × p) · ẑ, (33)

where v has the dimension of velocity. Notice that the diagonal
term ±h( p) in Hamiltonian (30) has opposite signs on the A

and B sublattices. This corresponds to staggered direction of
the Rashba vector n = ±ẑ on different layers for the spin-orbit
coupling vn(σ × p) as shown in Fig. 3. In the vicinity of
p = 0, let us also approximate t1( p) ≈ t1(0) and t2( p) ≈ t2(0)
and assume that |t1(0)| �= |t2(0)|. Then, the surface states exist
only if |t1(0)| < |t2(0)|, and the spectrum of the surface states
has linear dependence on | p|,

E0( p) = ±v| p|, (34)

which is illustrated by the Dirac cone in Fig. 4(a). The wave
functions of the surface states have in-plane spin-polarization
perpendicular to the momentum p. On the other hand, the bulk
spectrum is parabolic in the vicinity of p = 0,

E2(k, p) = |t(k,0)|2 + v2 p2, (35)

as shown in both panels of Fig. 4 by solid colors. Note that,
because of the assumption |t1(0)| �= |t2(0)|, the off-diagonal
element t(k, p) is nonzero in the vicinity of p = 0 and so the

FIG. 4. (Color online) Energy spectrum of the 3D Shockley
model described by Hamiltonian (30) in the vicinity of p = 0. The
spectrum of the bulk states [Eq. (35)] is shown by the solid parabolas
in both panels. According to the Shockley criterion, surface states
(a) exist if |t1| < |t2| and (b) do not exist otherwise. The surface
states have the linear dispersion [Eq. (34)] shown by the transparent
Dirac cone in (b).
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bulk spectrum (35) is gapped. On the other hand, if |t1(0)| =
|t2(0)|, the bulk spectrum is gapless, and the Hamiltonian
undergoes the topological phase transition, as will be shown
in Sec. IV.

C. Vortex lines in 3D momentum space

In principle, the tunneling amplitudes t1( p) and t2( p) may
depend on the in-plane momentum p. So the surface state
existence criterion can only be satisfied in a certain domain of
the 2D momentum space p. In this section we discuss how to
identify this domain for the Hamiltonian (30).

Let us consider the equation

t(k, p) = 0 (36)

for the complex function t(k, p) in Eq. (31). It is equivalent
to two equations Re t(k, p) = 0 and Im t(k, p) = 0, which
define a line in the 3D momentum space (k, p). In general,
the complex-valued function t(k, p) has a phase circulation
around the line where it vanishes, that is, Eq. (36) defines a
vortex line in the 3D momentum space.31,32,36 As an example,
such a vortex line and its projection on the 2D momentum
space p are shown in Fig. 5. Phase winding of the function
t(k, p) along an arbitrary contour γ can be calculated as

W (γ ) = 1

2πi

∮
γ

d l
d

d l
ln t(k, p), (37)

where the notation l = (k, p) is used for brevity. For instance,
the phase winding along the contour γ3 around the vortex line
in Fig. 5 is nonzero,

W (γ3) = 1. (38)

Because the BZ is periodic in k, we can also define a closed
contour by varying 0 < k < 2π for a fixed value of the in-plane
momentum p. Such contours γ1 and γ2 are shown in Fig. 5, and
the phase windings (37) are well defined for these contours.
The contours γ1 and −γ2 can be merged into the contour γ3.
So, the following equation holds:

W (γ3) = W (γ1) − W (γ2). (39)

Given Eq. (38) and the condition (22) that W (γ1,2) � 0, we
find that the winding numbers are W (γ1) = 1 and W (γ2) = 0.
Since a nonzero winding number is required for existence of
the surface states according to Eq. (22), we conclude that the

FIG. 5. (Color online) The thick blue curve is a vortex line in the
3D momentum space defined by Eq. (36). Its projection onto the 2D
momentum space p defines the boundary of the shaded area, where
the surface states exist.

surface states exist for the 2D momenta p in the shaded area
of Fig. 5 and do not exist outside. Thus, we have shown that
the projection of the vortex line (36) onto the 2D momentum
space p defines the domain where the surface states exist.

While the main focus of this work is the 3D systems, let
us comment on the 2D case l = (k,px), where px and k are
the momenta parallel and perpendicular to the edge of the
2D system. The 2D case can also be viewed as a slice of
3D momentum space shown in Fig. 5 at a fixed momentum
py . Then, the solution of the equation t(k,px) = 0 generally
defines a set of vortex points in the 2D momentum space l .
Similarly to the 3D case, a projection of the vortex points
onto the px momentum space identifies a domain in px for
which the edge states exist. This method was used in Ref. 34
to find the edge states in graphene ribbons.

IV. DIAMOND MODEL

A. Hamiltonian and surface states

In this section we illustrate how the Shockley model can
be applied to study the surface states for a particular TI model
of Ref. 3. However a similar approach can be applied to other
models.2,5,19

Let us consider a tight-binding model on the diamond lattice
shown in Fig. 6. The diamond lattice has two equivalent atom
positions denoted by A (red) and B (blue). Atoms of each type
form 2D triangular lattices, so that the A and B layers alternate
along the z direction similarly to Fig. 3. The nearest A and
B layers form a distorted graphene lattice. So, when viewed
along the z direction, the structure looks like the ABC-stacked
graphite lattice. We define the nearest-neighbor vectors an,
n = 1, 2, 3, 4, as shown in Fig. 6, as well as the vectors

δ1 = a3 − a2 = (1/2 ,−
√

3/2),

δ2 = a1 − a3 = (1/2 ,
√

3/2), (40)

δ3 = a2 − a1 = (−1 , 0),

which are the in-plane elementary translation vectors of the
unit length |δn| = 1.

The Hamiltonian of the model has the form of Eq. (30),

H =
(

h( p) t∗(k, p)
t(k, p) −h( p)

)
, (41)

FIG. 6. (Color online) Illustration of the diamond crystal structure
and the tight-binding model described by Hamiltonian (41). The
lattice has two atoms in a unit cell shown by the red (A) and blue (B)
spheres.
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FIG. 7. (Color online) Lines of constant value for the graphene
spectrum function |t1( p)|/|t1| = C, for C = 0.5, 1, 2, within the
Brillouin zone (BZ), denoted by the dashed lines. The contour
lines degenerate to points at the BZ corners (K and K ′ points) at
C = 0 and at the BZ center at C = 3. The thick red dots denote the
time-reversal-invariant momenta points (47).

where the unit cell consists of the A and B atoms connected
by the vector a3. The off-diagonal part

t(k, p) = t1( p) + t2e
ik, (42)

t1( p) = t1(1 + e−i pδ1 + ei pδ2 ), (43)

describes the nearest-neighbor tunneling between the A and
B sublattices with the amplitude t1 along the vectors an,
n = 1, 2, 3, and the amplitude t2 along the vector a4.43 In
Eqs. (42) and (43) we distinguish between the in-plane-
momentum-dependent function t1( p) and the tight-binding
amplitude t1. Equation (43) describes the well-known tight-
binding spectrum of graphene,44

|t1( p)|/|t1| =
√

3 + 2 cos( pδ1) + 2 cos( pδ2) + 2 cos( pδ3).

(44)

The contour plots of |t1( p)|/|t1| = C, for C = 0.5, 1, 2, are
shown in Fig. 7. Note that t1( p) has the linear Dirac-like
dependence on the momentum p at the BZ corners, K and
K ′ points in Fig. 7.

The diagonal term h( p) in Hamiltonian (41) describes the
spin-orbit interaction3

h( p) = 2
√

2

3

SO

∑
i,j,l=1,2,3

εij l(σ · [ai × aj ]) sin( pδl), (45)

where 
SO is the strength of the spin-orbit coupling, and εij l

is the antisymmetric tensor. For simplicity we do not include
the interlayer spin-orbit coupling involving the vector a4 in
Hamiltonian (45), unlike in Ref. 3. Hamiltonian (45) has a
gapless particle-hole symmetric spectrum E0( p) = ±

√
h2( p),

E2
0( p)/
2

SO = h2( p)/
2
SO = sin2( pδ1)

= sin2( pδ2) + sin2( pδ3) + sin( pδ1) sin( pδ2)

+ sin( pδ1) sin( pδ3) + sin( pδ2) sin( pδ3),

(46)

which is shown in Fig. 8. The energy E0( p) vanishes at the
four time-reversal-invariant momenta (TRIM)

p∗ ∈ {	,M1,M2,M3}, (47)

where 	 is the BZ center, and M1,M2,M3 are at the centers of
the BZ boundary, as shown in Figs. 7 and 8. Hamiltonian (45)

FIG. 8. (Color online) The plot of the particle-hole symmetric
spectrum E0( p) [Eq. (46)] induced by the spin-orbit Hamiltonian h( p)
(45). In the vicinity of the time reversal invariant points, shown with
the thick red dots, the Hamiltonian (45) becomes linear in momentum.
The dashed line denotes the boundary of the BZ.

is bilinear in the momentum and spin operators in the vicinity
of the TRIM points

h( p + p(	)
∗ )


SO
≈

√
3

2
(σxpy − σypx), (48)

h( p + p(M3)
∗ )


SO
≈ −

√
3

2
σxpy − 1

2
√

3
σypx − 2

√
2√

3
σzpx. (49)

Thus, the energy spectrum E0( p) has the shape of the Dirac
cones in the vicinity of TRIM points, as shown in Fig. 8. It is
important to distinguish the linear, Dirac-like, behavior of the
off-diagonal term t1( p) in the vicinity of the BZ corners (K
and K ′ points) and of the diagonal term h( p) in the vicinity of
the TRIM points, which are different sets of points in the BZ.

The bulk spectrum of Hamiltonian (41)

E2(k, p) = |t(k, p)|2 + E2
0( p) (50)

contains contributions from both the diagonal h( p) and the
off-diagonal t(k, p) terms. The bulk spectrum becomes gapless
when both contributions vanish for some momenta (k, p),

E0( p) = 0, (51)
t(k, p) = 0. (52)

Given Eq. (42), Eq. (52) is equivalent to

|t1( p)| = |t2|, (53)

which defines a contour line in Fig. 7. Conditions (51) and
(52) can be satisfied simultaneously only for special values of
the parameters t1 and t2. The bulk spectrum becomes gapless,
for |t2| = |t1|, when the contour line (53) passes through the
TRIM points M1,M2,M3, and for |t2| = 3|t1|, when it passes
through the 	 point.

Hamiltonian (41) has the Shockley form [Eq. (30)]. There-
fore all the conclusions of Secs. II and III apply here, including
the criterion (19) for existence of the surface states. We find
that the surface states have the dispersion E0( p) and exist for
those in-plane momenta p where the following condition is
satisfied:

|t1( p)| < |t2|. (54)

The boundary of this domain is given by Eq. (53). When we
change the parameter t2 while keeping t1 fixed, the Hamiltonian
undergoes a transition between the phases with odd and
even numbers of surface Dirac cones, called the “strong”
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and “weak” TI phases in Ref. 3. For small |t2| 
 |t1|, the
contour lines given by Eq. (53) wind around the BZ corners
K and K ′ (see Fig. 7 for C = 0.5), and criterion (54) is
satisfied in the small area inside. The surface states do not
include the Dirac cones of E0( p), shown in Fig. 8, because
the TRIM points (red dots) are in the area where Eq. (54) is
not satisfied. Thus, Hamiltonian (41) is in the weak TI phase
in this case. For |t1| = |t2|, the contours (53) become straight
lines passing through the TRIM points M1,M2,M3, as shown
in Fig. 7 for C = 1. So both Eqs. (51) and (53) are satisfied at
the TRIM points, and the bulk spectrum [Eq. (50)] becomes
gapless. This marks a transition to the strong TI phase. When
|t1| < |t2| < 3|t1|, the contour forms a circle around the BZ
center, see Fig. 7 for C = 2. Criterion Eq. (54) is satisfied in
the exterior of the circle, and so the surface states contain the
Dirac cones at the TRIM points M1, M2, and M3. When t2
reaches the critical value |t2| = 3|t1|, the contour (53) shrinks
to the single point 	. The bulk spectrum becomes gapless,
and this marks a transition to the weak TI phase again. For
|t2| > 3|t1|, the Shockley criterion is satisfied everywhere in
the BZ, so the surface states include the Dirac cones for all
TRIM points (47).

As discussed above, the Shockley criterion (54) is written
for the case where the t2 bond is broken at the surface. If, on
the other hand, the crystal termination is such that the t1 bond
is broken at the surface, the existence criterion for the surface
state becomes complementary to the criterion (54)

|t1( p)| > |t2|. (55)

So, the surface states now exist for those momenta p where
they did not exist in the case of the broken bond t2 and have
the Dirac cones at the complementary TRIM points. This is
summarized in Table I, which shows the Dirac cones belonging
to the surface states depending on whether t1 or t2 is broken at
the surface. In the strong TI phase there is an odd number of
the Dirac cones in the surface states, so, at least, one surface
Dirac cone always exists. In contrast, in the weak TI phase
there is an even number of the surface Dirac cones, so the
surface states may disappear under certain conditions.

B. 3D vortex lines

In the previous section we showed that the 2D contour
defined by Eq. (53) represents the boundary separating the
domain in the 2D momentum space where the Shockley
criterion is satisfied. On the other hand, the contour (53) is
just the projection of the 3D vortex line, defined by Eq. (52),

t(k, p) = t1( p) + t2e
ik = 0, (56)

TABLE I. The table shows the points in the BZ where the surface
states exist depending on the parameters of the model and which bond
is broken at the surface. According to Fig. 8, the surface states have
the Dirac cones at the corresponding points. Letters M1,M2, M3, 	

denote positions of the TRIM points (47).

t2 broken t1 broken TI
0 < |t2| < |t1| − M1,2,3, 	 weak
|t1| < |t2| < 3|t1| M1,2,3 	 strong
3|t1| < |t2| M1,2,3, 	 − weak

onto the 2D momentum space, as discussed in Sec. III. Let us
discuss evolution of these 3D vortex lines with the change of
the parameters t1 and t2. In the vicinity of the BZ corners p0 =
(±4π/3, 0), K and K ′ points in Fig. 7, where the function
t1( p) vanishes, Eq. (43) can be linearized

t1( p0 + p) ≈ −
√

3

2
t1(±px + ipy). (57)

So, for |t2| 
 |t1|, Eq. (56) with t1( p) defined in Eq. (57)
describes spirals in the 3D momentum space (k, p),45

(
px

py

)
= 2√

3

t2

t1

(± cos k

sin k

)
, (58)

as shown in Fig. 9(a). Projections of these spirals onto the
2D momentum space p encircle the corners K and K ′ of
the 2D BZ. With the increase of t2, the spirals grow until t2
reaches the critical value |t2| = |t1|. At this point, the vortex
lines reconnect as shown in Fig. 9(b) and transform into
three families of straight lines obtained by intersections of
the planes:

{ pδ1 = π + 2πn}
⋂

{ pδ3 = −k + 2πm}, (59)

{ pδ2 = π + 2πn}
⋂

{ pδ3 = k + 2πm}, (60)

{ pδ3 = π + 2πn}
⋂

{k = π + 2πm}, (61)

where n and m are independent integers. The part of these
lines residing in the first BZ forms a loop highlighted in red
for clarity in Fig. 9(b). With the further increase of t2, the
vortex line detaches from the BZ boundary and becomes a
closed loop, as shown in Fig. 9(c). In the vicinity of the 	

point, the function t1( p) given by Eq. (43) can be expanded to
the second order in p, so the vortex line defined by Eq. (56)
is given by the intersection of a cylinder and a plane in the 3D
momentum space (k, p),{

p2
x + p2

y = 2

3

(
9 − t2

2

t2
1

)} ⋂{
k = π +

√
3
t1

t2
py

}
. (62)

For the critical value |t2| = 3|t1|, the vortex line shrinks to the
	 point and then disappears for |t2| > 3|t1|.

So, we observe that the vortex lines change their topology at
the critical values of the model parameters |t2| = |t1| and |t2| =
3|t1|. These are the critical values where the transitions happen
between the weak and strong TI phases. So, the configuration
of the vortex lines (56) is directly related to the topological
phase of the full Hamiltonian H [Eq. (41)].

Now, let us illustrate that the vortex lines are gauge
dependent, that is, different choice of phases in the tight-
binding model leads to different vortex lines. Let us choose
the elementary cell consisting of the A and B atoms connected
via the vector a2 shown in Fig. 6, rather than a1 chosen
in Eqs. (41)–(43). Then, Eq. (43) becomes t1( p) = t1(1 +
e−i pδ3 + ei pδ1 ), which is equivalent to the 2π/3 rotation of
t1( p) in Eq. (43) around the k axis. Since t1( p) defines the
vortex lines via Eq. (56), the vortex lines are 2π/3 rotated
compared to the lines shown in Fig. 9. Notice, however, that
the area where the surface states exist, shown by the shaded
area in Fig. 9, is C3 symmetric and thus remains the same for
a different gauge choice.
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FIG. 9. (Color online) Vortex lines in the 3D momentum space
defined by Eq. (56), and shown for different values of the parameters:
(a) |t1| > |t2|, (b) |t1| = |t2|, and (c) |t1| < |t2| < 3|t1|. The vortex
lines are shown by the thick lines with the arrows representing
vorticity. The thin lines show projections of the vortex lines, which
encircle the shaded area in the 2D momentum space p, where the
Shockley criterion (54) is satisfied and the surface states exist. The
dashed lines show the boundaries of the BZ. The part of the vortex
lines residing in the first BZ is highlighted in red in (b). The three
panels show the evolution of the vortex lines with the change of
the parameters of the Hamiltonian. At |t1| = |t2|, the vortex lines
reconnect at the TRIM points and change their topology from spirals
for |t1| > |t2| to the loop for |t1| < |t2|. The change of the vortex lines
topology is responsible for a transition from the weak to strong TI
phase in the Hamiltonian (41).

We also point out that the Shockley Hamiltonian (41)
and the vortex lines are constructed for a particular crystal
termination and cannot be directly used to study surface
states for other surfaces. For a different crystal termination,
we need to redefine the in-plane p′ and the out-of-plane k′
momenta relative to the “new” surface. Since the new mo-
menta (k′,p′

x,p
′
y) are related to the “old” momenta (k,px,py)

through some orthogonal transformation O: (px,py,k)T =
O (p′

x,p
′
y,k

′)T, the diagonal element of Hamiltonian (41) is
generally a function of both k′ and p′: h( p) = h(k′, p′). So the
Hamiltonian of the new surface does not have the Shockley
form (41), which requires that h( p′) is independent of k′,

and the Shockley criterion is not directly applicable (see a
discussion at the end of Sec. III A).

V. SHOCKLEY MODEL DESCRIPTION OF Bi2Se3

A. General analysis

Despite its simplicity, the Shockley model may be directly
relevant to the description of real materials, such as Bi2Se3.
The crystal of Bi2Se3 is formed by a sequence of quintuple
layers.21,22,37,39,40 Each quintuplet consists of five alternating
layers of Bi and Se, as sketched in Fig. 10(a). Chemical
bonding within the quintuplets is relatively strong, whereas
the interquintuplet van der Waals attraction is relatively weak.
So, the natural cleavage plane lies between the quintuplets, as
shown in Fig. 10(a).

For the relevant energy interval near the Fermi level,
the electronic structure can be captured by considering the
electronic orbitals localized near the outermost layers of
Se within the quintuplets,37 as shown by the thick lines in
Fig. 10(a). Then, the Shockley amplitudes t1 and t2 describe
the intra- and interquintuplet tunneling between these orbitals,
as shown in Fig. 10(a). The tunneling amplitudes t1 and t2 may
depend on the in-plane momentum p.

As shown in the previous section, the Shockley surface
states strongly depend on how the crystal is terminated. When
the crystal is cut between the quintuplets, and t2 is broken on
the surface as shown Fig. 10(a) and realized experimentally,
a single Dirac cone is observed at the BZ center,38 as shown
in Fig. 10(c). So, in terms of the Shockley model, the surface
state existence criterion |t1( p)| < |t2( p)| is satisfied at the BZ
center and not satisfied at the BZ boundary.

In principle, the surface can also be introduced by cutting
the quintuplet layer and breaking the bond t1, as shown in
Fig. 10(b). To the best of our knowledge, this type of surface
has not been observed in Bi2Se3. In the previous section we
found that, for alternative crystal terminations, the surface
states have the Dirac cones at the complementary TRIM points
of the 2D BZ. Thus, we conclude that, when the quintuplet is

FIG. 10. (Color online) The crystal of Bi2Se3 is formed by
quintuple layers, schematically shown by the blue boxes. Each
quintuplet consists of the alternating layers Se-Bi-Se-Bi-Se. The
tight-binding tunneling amplitudes t1 and t2 connect the orbitals of
the outermost edges of the quintuplets. Then, depending on whether
t2 or t1 is broken at the surface, as shown by the red line in (a) and (b),
surface states occur in different regions of the 2D momentum space,
as shown in (c) and (d).
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broken at the surface as in Fig. 10(b), the surface states should
have Dirac cones at the boundary of the 2D BZ as shown in
Fig. 10(d). A similar prediction was made for the BixSb1−x

alloy in Ref. 41.
We can estimate the Shockley tunneling amplitudes t1( p)

and t2( p) for p close to the 	 point based on the band-
structure calculations of Ref. 21. As discussed in Sec. II A,
the extreme values of the energy gap can be obtained from the
off-diagonal matrix element t(k) = t1 + t2e

ik|k=0,π = t1 ± t2.
We compare these values with the band structure along the
direction k ∈ (0,π ) for the fixed in-plane momentum p = 0,
which is shown in Fig. 2(b) of Ref. 21. From the set of
equations t1 + t2 = 0.28 eV and t1 − t2 = −0.6 eV, we obtain
the following estimate:

t1 = −0.16 eV, t2 = 0.44 eV. (63)

Note that the geometric distance between the orbitals on
the adjacent quintuplets is shorter than the distance between
the orbitals within the quintuplet. Therefore, in the vicinity of
the 	 point, the interquintuplet tunneling |t2| should be greater
than the intraquintuplet tunneling |t1|, which is consistent with
Eq. (63).

B. Continuous approximation

In previous sections we have shown that, in the Shockley
model, existence of the surface states relies explicitly on
the tight-binding nature of the model. However, continuous
models21–26 are also widely used to describe the surface
states in the TI models and in real materials, such as Bi2Se3.
A continuous approximation is obtained by expanding the
Hamiltonian in the powers of the momentum k in the z

direction. This is equivalent to disregarding the BZ periodicity
for the momentum k and taking the limit where the size of
the elementary cell in the z direction goes to zero. In this
subsection we examine the applicability of the continuous-
limit approximation.

1. First-order expansion

Let us consider the Shockley Hamiltonian (30) for the fixed
value of the in-plane momentum p = p∗, where the diagonal
elements vanish,

H (k) =
(

0 t∗(k)
t(k) 0

)
, (64)

t(k) = t1 + t2e
ik. (65)

Without loss of generality, let us make an assumption that
t2 > 0. If the energy gap |t(k)| reaches minimum at k = 0,
then t1 < 0 as in Eq. (63). Then, we expand t(k) to the first
order in k around k = 0,

t(k) = t1 + t2 + it2k. (66)

The tight-binding boundary conditions (10) and (11) corre-
spond the following boundary conditions37 for the continuous
approximation:

ψa(z → 0) �= 0, ψb(z → 0) = 0, (67)

ψa,b(z → ∞) = 0. (68)

Using these boundary conditions, we solve the Schrödinger
equation H� = 0 for Hamiltonian (64) with the continuous
t(k) [Eq. (66)] and obtain the surface state

�0(z) =
(

1
0

)
eik0z. (69)

The exponential decay length in Eq. (69) is given by the
parameter

k0 = i

(
1 + t1

t2

)
, (70)

which is the root of the equation t(k0) = t1 + t2 + it2k0 =
0. Boundary conditions (68) are satisfied if Im k0 > 0 or
equivalently t1 > −t2; otherwise, the surface state does not
exist if t1 < −t2. So, the continuous model (66) with the
appropriate boundary conditions (67) and (68) gives the
surface state existence criterion

|t1| < |t2|, (71)

which coincides with the Shockley criterion (19). The contin-
uous wave function (69) correctly approximates the discrete
wave function (18) if the decay length is very long or equiv-
alently ||t1| − |t2|| 
 |t2|. However, the estimated tunneling
amplitudes t1 and t2 in Eq. (63) do not satisfy the latter
condition for Bi2Se3. Therefore, we conclude that the discrete
Shockley model gives a more appropriate description of the
surface states in Bi2Se3, than a continuous approximation,
because the difference between |t1| and |t2| is rather large.

2. Higher-order expansion

One may truncate the series for eik in Eq. (66) at a higher
order in k,

t(k) = t1 + t2 + t2

N∑
n=1

(ik)n

n!
. (72)

However, such a truncation gives a worse continuous descrip-
tion of the Shockley surface state. The equation t(k) = 0
now has N roots k1, . . . , kN . So there are N independent
coefficients cn in a general solution �(z) = c1e

ik1z + · · · +
cNeikN z to satisfy the boundary conditions (67) and (68).
This gives rise to a large number of the unphysical surface
state solutions, while the Shockley model predicts only one
surface state. Most of the roots kj have large imaginary parts
Im kj � 1. These solutions are spurious, because they corre-
spond to the wave functions decaying over a length shorter than
the unit cell of the crystal. For example, for N = 2, Eq. (72) is

t(k) = t1 + t2 + it2k − t2
2 k2/2. (73)

Then, the equation t(k) = 0 has two roots

k1,2 = i ±
√

−1 + 2(1 + t1/t2). (74)

In the limit |1 + t1/t2| 
 1, the roots become k1 = i(1 +
t1/t2) and k2 = 2i. We observe that, while the first root k1

reproduces the correct approximation Eq. (70), the second
root k2 has a large imaginary part and must be discarded. In
another regime, when the expression under the square root in
Eq. (74) is positive, both roots have large imaginary parts Im
k1,2 = 1, so the continuous approximation is not applicable.
Moreover, as pointed out in Ref. 37, the continuous description
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does not distinguish between two possible ways of terminating
the crystal shown in Figs. 10(a) and 10(b). A correct boundary
condition should be chosen to distinguish between different
possible surface terminations.

Despite these problems, the k2 terms were kept in the
effective description of Bi2Se3 in Ref. 22,

H = H0 + H1, (75)

H0 = ε(k) + (M0 + M1k
2)τz + B0kτy, (76)

H1 = A0τx(σ × p), (77)

where M0 = −0.28 eV, M1 = 6.86 eV Å2, B0 = 2.26 eV Å,

A0 = 3.33 eV Å; τy and τx are the Pauli matrices. In Eq. (77),
H1 represents spin-orbit interaction and explicitly depends
on the spin operators σ and the in-plane momentum p. H0

depends on the out-of-plane momentum k and is responsible
for the existence of the surface states. Following Ref. 22 we
drop the term ε(k) in Eq. (76), because it is proportional to the
unit matrix. Then we apply the unitary transformation e−iτyπ/4,
which changes τz → −τx and τx → τz. So the Hamiltonian
becomes U †H0U → H0,

H0 =
(

h( p) t∗(k)
t(k) −h( p)

)
, (78)

t(k) = −M0 − M1k
2 + iB0k, (79)

h( p) = A0(σ × p). (80)

Now the Hamiltonian H0 has the same form as in Eq. (30).
Following Ref. 37 we infer that the basis for the Hamiltonian
(78) corresponds to the basis of electron orbitals located at
the outermost layers of the quintuplet. Then the off-diagonal
matrix element t(k) in Eq. (79) corresponds to the second-order
expansion of the off-diagonal element of the Shockley model
(73), while h( p) defines the in-plane dispersion.

To make explicit correspondence with the previous section,
we change units for k: ka → k, where a = 1 nm is the size of
the elementary cell of Bi2Se3 in the z direction. So we rewrite
the parameters M1/a

2 → M1, B0/a → B0 in the energy units
of eV,

M0 = −0.28 eV, M1 = 0.07 eV, B0 = 0.23 eV.

Notice that t(k) [Eq. (79)] parametrizes a parabola in the
complex space (Re t ,Im t) when k is changed. So we plot
t(k) defined by Eq. (79) for −π/2 < k < π/2 by the solid
line in Fig. 11. Figure 11 also shows the plot t(k) for
the discrete Shockley model (64) with the parameters (63)
by the dashed line. We see that the continuous approximation
to the Hamiltonian agrees with the Shockley model within
a limited range of k with the continuous approximation.
Nevertheless, the continuous approximation has serious de-
ficiencies for construction of the wave functions, as described
above, whereas the Shockley model provides a good overall
description for the surface states in Bi2Se3.

VI. GENERALIZED SHOCKLEY MODEL

In this section we generalize the Shockley model to
include additional intercell tunneling amplitudes. To simplify

FIG. 11. (Color online) Plot of the function t(k) in the complex
plane of (Re t,Im t). The second-order expansion for t(k), given by
Eq. (79) with the parameters from Ref. 22, is plotted by the solid line
for −π/2 < k < π/2. The function t(k) in the Shockley model, given
by Eq. (65) with the parameters t1 and t2 from Eq. (63), is plotted
by the dashed line. The Shockley contour winds around the origin,
which guarantees existence of the surface state.

notations, we present results for the 1D case. However, the
results can be straightforwardly generalized to the 3D case
by assigning dependence on p = (px,py) to the tunneling
amplitudes, as discussed in Sec. II.

A. Additional tight binding amplitude t3

Let us consider a 1D Hamiltonian of the form given by
Eq. (1) with

U =
(

0 t∗1
t1 0

)
, V =

(
0 t∗2
t3 0

)
, (81)

where the matrix V now contains an additional tight-binding
amplitude t3. The 1D chain model corresponding to Eq. (81)
is illustrated in Fig. 12. The amplitude t1 describes tunneling
between the A and B sublattices inside the unit cell, and the
amplitudes t2 and t3 between the unit cells. The introduc-
tion of this tight-binding amplitude is motivated by the TI
literature19,20 as well by the novel 1D models such as the su-
perconducting Majorana chain46,47 and the Creutz ladder.48,49

This model is a natural mathematical generalization of the

FIG. 12. (Color online) An illustration of the generalized Hamil-
tonian (82). The Hamiltonian describes a tight-binding model with the
elementary cell comprised of the A and B sites, which are connected
via the complex tight-binding amplitudes t1, t2, and t3.
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models considered in the previous sections. The Hamiltonian
of the general model has the same form as in Eq. (5),

H (k) =
(

0 t∗(k)
t(k) 0

)
, (82)

with

t(k) = t1 + t2e
ik + t3e

−ik. (83)

As in Eqs. (12) and (13), the eigenstate equations for the
wave functions on the A and B sublattices decouple at E = 0.
(Appendix C proves that the edge state can exist only for
E = 0.) The zero-energy state on the A sublattice has the
complex momentum k obtained from the equation

t(k) = t1 + t2e
ik + t3e

−ik = 0. (84)

We substitute q = eik and obtain an equation for the rational
function t(q),

t(q) = t1 + t2q + t3q
−1 = 0, (85)

which has two solutions

q1,2 = eik1,2 = 1

2t2

( − t1 ±
√

t2
1 − 4t2t3

)
, (86)

with the complex momenta k1,2. Using these momenta, we
construct an edge state that satisfies the boundary conditions
given by Eqs. (10) and (11). The edge state has the energy
E0 = 0 and is localized on the A sublattice

�0(z) =
(

ψ (0)
a (z)
0

)
, E0 = 0, (87)

ψ (0)
a (z) = qz

1 − qz
2 = eik1z − eik2z. (88)

The wave function (88) satisfies the boundary condition (11)
if Im k1 > 0 and Im k2 > 0 or, equivalently,

|q1| < 1 and |q2| < 1. (89)

Likewise, a zero-energy state on the B sublattice has the
complex momenta k obtained from the equation

t∗(k) = t∗1 + t∗2 e−ik + t∗3 eik = 0. (90)

Notice that the symbol of complex conjugation ∗ applies only
to the tunneling amplitudes in Eq. (90), so t∗(k) �= [t(k)]∗ if
Im k �= 0. Equation (90) can be obtained by replacing k → k∗
in Eq. (84). So the two solutions k′

1,2 of Eq. (90) and the
corresponding q ′

1,2 can be obtained from Eq. (86),

k′
1,2 = k∗

1,2, q ′
1,2 = 1/q∗

1,2. (91)

The edge state exists on the B sublattice

�0(z) =
(

0
ψ

(0)
b (z)

)
, E0 = 0, (92)

ψ
(0)
b (z) = (q ′

1)z − (q ′
2)z = eik′

1z − eik′
2z (93)

if Im k′
1 > 0 and Im k′

2 > 0 or, equivalently,

|q1| > 1 and |q2| > 1. (94)

To summarize, the edge state (88) exists on the A sublattice if
both roots of Eq. (85) are inside the unit circle, as in Eq. (89)
and in Fig. 13(a). The edge state (93) exists on the B sublattice
if both roots of Eq. (85) are outside the unit circle, as in Eq. (94).

FIG. 13. (Color online) Topological formulation of the Shockley
criterion. The roots q1,2 of Eq. (85) are shown in (a) and (b) by red dots.
An edge state exists if the roots are on the same side of the unit circle
C = {q = eik, k ∈ (0,2π )}, as shown in (a). No edge state exists if
the roots are on the opposite sides of the unit circle, as shown in (b).
The thick black dot at the origin is the pole of Eq. (85). An alternative
formulation in terms of the winding number (97) is shown in (c) and
(d). An edge state exists if the contour C ′ = {t(k), k ∈ (0,2π )} winds
around the origin, as shown in (c). No edge state exists if the contour
C ′ does not wind around the origin, as shown in (d).

The edge state does not exist if one of the roots is inside and
another root is outside the unit circle

|q1| > 1 and |q2| < 1, (95)

as shown in Fig. 13(b). Obviously, the conditions (89) and (94)
cannot be met simultaneously, so edge state cannot exist on
both sublattices simultaneously.

Like in Sec. II A, the criterion for the edge states existence
can be formulated in terms of the winding number of the
complex function t(q) along the unit circle C = {|q| = 1},

W = 1

2πi

∮
|q|=1

dq
d

dq
ln [t(q)]. (96)

The criteria given by Eqs. (89), (94), and (95) are summarized
in the following:

W =
⎧⎨
⎩

1, edge state ψ (0)
a (z) exists,

0, edge state does not exist,
−1, edge state ψ

(0)
b (z) exists.

(97)

To prove it we use Cauchy’s argument principle

W = Z − P, (98)

which relates the winding number W of a complex function
t(q) on a contour C with the number of zeros Z and the
number of poles P inside the contour C. Since t(q) given by
Eq. (85) has a pole at q = 0, as shown by the thick black dot
in Figs. 13(a) and 13(b), the number of poles is P = 1. The
edge state exists on the A sublattice if |q1,2| < 1, in which
case W = Z − P = 2 − 1 = 1. The edge state exists on the B

sublattice if |q1,2| > 1, in which case W = Z − P = 0 − 1 =
−1. The edge state does not exist for |q1| > 1 and |q2| < 1, in
which case W = Z − P = 1 − 1 = 0.

In other words, according to Eq. (97), the edge state exists
if the closed contour

C ′ = {t(k), k ∈ (0, 2π )} (99)

winds around the origin, as shown in Fig. 13(c). The direction
of winding of t(k) defines the sublattice on which the edge state
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is localized. An analogous criterion was proposed in Ref. 20
(for a comparison with our model, see Appendix C).

For the tunneling amplitudes t1, t2, and t3 connecting the
nearest unit cells, Eq. (99) defines an ellipse

t(k) = t1 + (t2 + t3) cos k + i(t2 − t3) sin k, (100)

which is shifted by t1 from the origin. In cases where the
tunneling amplitudes are real, the ellipse in Eq. (100) encloses
the origin if

|t1| < |t2 + t3|. (101)

Equation (101) represents the generalized Shockley rule of a
stronger bond: The edge state exists if the broken intercell
bond t2 + t3 is stronger than the intracell bond t1.

Our consideration does not include tunneling amplitudes
connecting sites on the same sublattices in different unit cells.
Including such terms would make h in Eq. (30) depend on
k. When these tunneling amplitudes connect only the nearest
neighboring unit cells, the problem can still be solved as shown
in Ref. 20 (see a discussion in Appendix C).

B. Arbitrary periodic function t(k)

In the most general form, Hamiltonian (82) can be written
as

H (k) =
(

0 t∗(k)
t(k) 0

)
, (102)

where

t(k) =
N∑

n=−N

tne
ikn. (103)

This model describes a 1D tight-binding chain, where each unit
cell is coupled to N preceding and N successive unit cells.
Therefore, for a half-infinite system at z � 1, the boundary
conditions require that the wave function vanishes at the
fictitious N sites adjacent to the boundary

�(−N + 1) = 0, . . . , �(−1) = 0, �(0) = 0, (104)

similarly to Eq. (10). As in the previous section, let us substitute
q = eik and rewrite Eq. (103) in the polynomial form

t(q) =
N∑

n=−N

tnq
n. (105)

This polynomial has 2N roots. Suppose the number of roots
N1 with |qj | < 1, j = 1, . . . , N1, is greater than N : N1 > N .
In this case we can construct a trial wave function

�(z) =
N1∑
j=1

αjq
z
j , (106)

which vanishes at z → ∞. The coefficients αj in Eq. (104)
are obtained by solving a set of N boundary condition
equations (104). Therefore, in general, there are N1 − N

linearly independent solutions for the edge states localized
on the sublattice A. The same result can be formulated
using the winding number in Eq. (96). Indeed, the function
(105) has a pole of the N th order at q = 0 and N1 zeros at

|qj | < 1,j = 1, . . . ,N1. Therefore, using Cauchy’s argument
principle (98), we obtain

W = Z − P = N1 − N. (107)

Thus, the winding number W of the function t(k) gives the
number of the edge states. On the other hand, if W < 0,
then there are |W | degenerate edge states localized on the
sublattice B. The edge states cannon exist simultaneously on
both sublattices A and B. There are no edge states for W = 0.
Finally, in the limit N → ∞, the winding criterion applies to
an arbitrary complex function t(k) periodic in k.

VII. SYMMETRIES

In this section we discuss the symmetries of the Shockley
model. Let us first consider the case h( p) = 0 in the general-
ized Shockley Hamiltonian (30)

H (k, p) =
(

0 t∗(k, p)
t(k, p) 0

)
. (108)

In this case the A and B sublattices have equal on-site
energies, which is reflected by a chiral symmetry of the
Hamiltonian τzH (k, p)τz = −H (k, p), where τ = (τx,τy,τz)
are the Pauli matrices acting in the AB sublattice space.
Therefore, Hamiltonian (108) belongs to the class AIII of
chiral Hamiltonians.11 As a consequence of chiral symmetry,
the energy spectrum is symmetric: If � is an eigenstate
H� = E�, then τz� is also an eigenstate corresponding
to the opposite energy Hτz� = −Eτz�. Therefore, if a
nondegenerate eigenstate with E = 0 exists, it should be an
eigenstate of τz� = λ�, λ = ±1. So, the E = 0 state must be
localized on one of the sublattices, consistently with Eq. (18).
The winding number W ∈ Z of the vector d(k, p), defined in
Eq. (29), gives the number of surface states for a fixed p.

In Sec. II B we generalized the Shockley model by including
the diagonal element h( p),

H (k, p) =
(

h( p) t∗(k, p)
t(k, p) −h( p)

)
. (109)

The Hamiltonian (109) does not have a chiral symmetry,
but it has another sublattice symmetry (iτyK) H (iτyK) =
H , where K is the operator of complex conjugation. This
symmetry exchanges the sublattices iτyK (ψA ,ψB )T = (ψ∗

B ,

− ψ∗
A)T , and makes the bulk spectrum symmetric (there is

an opposite energy counterpart iτyK� for every eigenstate
�). However, this symmetry is broken at the boundary of
the crystal, where one of the sublattices is exposed at the
surface, as shown in Fig. 3. As a result, the surface state gains
the dispersion E0( p) = h( p), whereas the opposite-energy
counterpart of the surface state is localized at the opposite
surface. The number of the surface states is still given by the
winding number W ∈ Z of the vector d(k, p) as a function k

for a fixed p.
In this work we discussed Hamiltonians with the time-

reversal symmetry in the presence of spin-orbit coupling,
which belong to the class AII of topological insulators
classification.11 The spin-orbit coupling and the time-reversal
symmetry require the term h( p) to have the 2D Dirac-type
form, as discussed in Sec. III B. However, the Shockley
Hamiltonian (109) is applicable in a more general case,
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where the term h( p) is an arbitrary Hermitian matrix not
necessarily respecting the time-reversal symmetry. So the
Shockley Hamiltonian (109) can describe the quantum Hall
states, which belong to the class A of topological insulators
classification.11 In addition, the Shockley model can describe
superconducting systems, in which case Eq. (109) should be
understood as a Bogolyubov–de Gennes Hamiltonian,29–31,36

and iτyK represents the particle-hole symmetry.

VIII. CONCLUSIONS

Like some previous works,19,20,32 our paper explores a tight-
binding theory of the surface states in topological insulators.
We show that the surface states can be understood using the
simple and well-known Shockley model,27,28 a 1D model
with the A and B atoms per unit cell, connected via alter-
nating tunneling amplitudes. We generalize the 1D Shockley
model to the 3D case described by the 2 × 2 Hamiltonian
(30) with the diagonal element h( p) and the off-diagonal
element t(k, p). The diagonal element h( p) defines the energy
dispersion of the surface states, while the complex-valued
off-diagonal element t(k, p) defines the domain of existence
of the surface states. The surface states exist for those in-
plane momenta p where the phase winding of t(k, p) along
k ∈ (0,2π ) is nonzero. The sign of the winding number gives
the sublattice A or B, on which the surface states are localized.
Equation t(k, p) = 0 defines a vortex line in the 3D momentum
space,31,32,36 and projection of the vortex line onto the 2D space
of p is the boundary of the domain where the surface states
exist. We apply this approach to the TI model on the diamond
lattice.3 We show how the evolution of the vortex lines is
responsible for transitions between the weak and strong TI
phases. We discuss why the discrete Shockley model is better
than continuous models for the description of the edge states
in real materials, such as Bi2Se3. The tight-binding model
demonstrates that different types of surface states are formed
depending on how crystal is terminated.37 The surface states
have the Dirac cone at the center of the Brillouin zone when
the crystal is cut between the quintuple layers of Bi2Se3, but,
when the crystal is terminated inside the quintuple layer, the
surface states have three Dirac cones on the boundary of the
Brillouin zone. We also generalize the Shockley model to an
arbitrary complex function t(k) periodic in k, which includes
the long-range intercell tunneling amplitudes. We prove the
validity of the winding number criterion in this general case as
well. We hope that this work will provide a useful toolkit for
studying the surface states in TI, as well as give a transparent
picture for their physical interpretation.
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APPENDIX A: EDGE STATES IN THE ORIGINAL
SHOCKLEY MODEL

In Sec. II the Schrödinger equation for the wave function
�(z) was given in a recursive form for the integer coordinate
z � 1. The main question is whether the recursion generates a
decaying function �(z) → 0 at z → ∞, which represents an

edge state, or an increasing function �(z) → ∞ at z → ∞,
which is unphysical. Below we use the generating function
method to find convergence criterion for the edge-state solution
�(z). The Schrödinger equation for the original Shockley
model (1) is

V �(z) + (U − E)�(z + 1) + V †�(z + 2) = 0, (A1)

V =
(

0 t2
0 0

)
, U =

(
0 t1
t1 0

)
, (A2)

where �(z) = [ψa(z),ψb(z)]T and z � 1, whereas the bound-
ary condition is

(U − E)�(1) + V †�(2) = 0. (A3)

Let us multiply the zth Eq. (A1) by the (z − 1)th power of an
auxiliary complex variable q and take a sum for z � 1,

∞∑
z=1

qz−1[V �(z) + (U − E)�(z + 1) + V †�(z + 2)] = 0.

(A4)

Introducing the generating function

G(q) =
∞∑

z=1

qz−1�(z), (A5)

Eq. (A4) can be written as

[q2V + q(U − E) + V †]G(q) = V †�(1), (A6)

where we utilized the boundary condition (A3). From Eq. (A6)
we obtain the generating function in terms of �(1),

G(q) = [q2V + q(U − E) + V †]−1 V † �(1). (A7)

In order to investigate convergence of �(z), we use the
following proposition.

Proposition 1. A rational generating function G(q) corre-
sponds to an edge state �(z)

z→∞−−−→ 0 if and only if all poles
qj=1,2,3,... of G(q) have the absolute values greater than one,
|qj | > 1.

Indeed, a rational function with the poles qj can be
transformed to the form G(q) = ∑

j

fj (q)
(q−qj )nj , where fj (q) is a

polynomial function, and nj is the order of the pole qj . Con-
sider a simple example of the first-order pole G(q) = q1

q1−q
=∑

z(q/q1)z, which corresponds to the geometric progression.
According to Eq. (A5), the expansion coefficients give the
wave function �(z) = 1/qz−1

1 . Then, the absolute values of the
pole |q1| < 1, |q1| = 1, and |q1| > 1 correspond, respectively,
to an unphysical growing solution �(z)

z→∞−−−→ ∞, a bulk state
�(z) = eikz, and a decaying edge state �(z)

z→∞−−−→ 0. The case
of a more complicated G(q) can be reduced to the above simple
consideration.

Now let us use Proposition 1 to investigate convergence
of �(z). Using Eq. (A7) and the expressions for U and V in
Eq. (A2), we find

G(q) = ψa(1) t2

(t1 + t2q)(t2 + t1q) − E2q

(
t1 + t2q

Eq

)
. (A8)

The poles of Eq. (A8) are given by the zeros q1 and q2 of
the denominator, unless they are canceled out by zeros in the
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numerator. Using Vieta’s formulas for the quadratic equation
in the denominator, we obtain q1q2 = 1. So, if q1 is greater
than one, |q1| > 1, then q2 is less than one, |q2| < 1. Using
Proposition 1, we conclude that there is no edge state if the
generating function G(q) in Eq. (A8) has two poles. In order
to obtain an edge state, we need to reduce the number of poles
of the generating function G(q). Notice that if we put E = 0
one pole is canceled out, and G(q) greatly simplifies

G(q) = 1

1 + (t1/t2)q

(
1
0

)
, (A9)

and the edge state exists if

|t2/t1| > 1. (A10)

APPENDIX B: ENERGY OF THE EDGE STATES IN THE
GENERALIZED SHOCKLEY MODEL

In this section we use the generating function method to
prove that an edge eigenstate for Hamiltonian (27) can exist
only for the eigenenergy E = 0. Like in the previous section,
Hamiltonian (27) can be given in a recursive form Eq. (A1)
with the following U and V ,

V =
(

0 t∗2
t3 0

)
, U =

(
0 t∗1
t1 0

)
. (B1)

Using Eq. (A7) we obtain the generating function

G(q) = N (q)

D(q)
, (B2)

where the numerator

N (q) =
(

Eq β(q)
α(q) Eq

) (
ψ1

ψ2

)
(B3)

and denominator

D(q) = α(q) β(q) − E2q2 (B4)

are defined through the polynomials

α(q) = t3q
2 + t1q + t2, (B5)

β(q) = t∗2 q2 + t∗1 q + t∗3 . (B6)

In Eq. (B3) the following notation is used for brevity:
(

ψ1

ψ2

)
= V †

(
ψa(1)
ψb(1)

)
. (B7)

According to Proposition 1, the poles of Eq. (B2) determine
whether G(q) corresponds to an edge state. The potential
poles of G(q) are given by zeros of the quartic polynomial
D(q) in the denominator. Thus, let us find the structure of
zeros of D(q). Suppose q1 is a solution of the quartic equa-
tion D(q1) = 0. Then, since [D(1/q∗)]∗ = D(q)/q2, 1/q∗

1
is also a solution of the quartic equation D(1/q∗

1 ) = 0. So,
in the most general case, the polynomial D(q) has zeros
q1 and q2, as well as 1/q∗

1 and 1/q∗
2 . Thus, according to

Proposition 1, the only way to build an edge state is to

have the smallest poles |q1| < 1 and |q2| < 1 canceled out
by the zeros of the numerator N (q). So, both components of the
vector

N (q) =
(

t∗2 ψ2q
2 + [t∗1 ψ2 + Eψ1]q + t∗3 ψ2

t3ψ1q
2 + [t1ψ1 + Eψ2]q + t2ψ1

)
(B8)

must be proportional to (q − q1)(q − q2) and, thus, be linearly
dependent. Hence, the coefficients in front of the terms q2 and
q0 should also be linearly dependent and so

ψ1ψ2(|t2|2 − |t3|2) = 0. (B9)

If |t2| �= |t3|, then ψ1ψ2 = 0, so the substitution of ψ1 = 0 and
ψ2 �= 0 (or vice versa) in Eq. (B8) and the requirement that
both components of N (q) are proportional lead to E = 0. The
case |t2| = |t3| is trivial, because Vieta’s formulas for Eq. (B8)
require that |q1q2| = |t2/t3| = 1, which contradicts the initial
assumption that |q1| < 1 and |q2| < 1. Thus, we have proved
that the edge states of Hamiltonian (27) can only exist for
E = 0, and there are no other edge states.

APPENDIX C: COMPARISON TO THE MODEL BY MONG
AND SHIVAMOGGI

Mong and Shivamoggi20 considered the tight-binding
model with the Hamiltonian

H =
∑

z

�†(z)[U�(z) + V �(z − 1) + V †�(z + 1)]. (C1)

Here U and V represent the intracell and intercell 2 × 2
matrices

U = τ b0, V = τ b, (C2)

where τ = (τx,τy,τz) are the Pauli matrices in the AB

sublattice space, b0 is a real vector, and b a complex vector. Our
Hamiltonian (27) can also be written in the form of Eqs. (C1)
and (C2) with

b0 = (Re t1, Im t1,h), (C3)

b = [t∗2 + t3, i(t
∗
2 − t3), 0]/2. (C4)

Notice that bz = 0 in Eq. (C4). It can shown that the general
Hamiltonian (C1) can be always transformed to a form with
bz = 0. Indeed, the unitary transformations e−iτj φ generated
by the Pauli matrices τj rotate the basis for the vector b in
the bilinear form τ b. For an arbitrary complex vector b, it
is always possible to select the axis z to be orthogonal to
both b and b∗, for example, along i(b × b∗). So there always
exists a basis where bz = 0, and the generalized Shockley
model discussed in Sec. VI is equivalent to the model studied
in Ref. 20.

In the Fourier representation Eq. (C1) has the form of
Eq. (29) with the vector d = b0 + be−ik + b∗eik . When k

changes from 0 to 2π , the vector d(k) stays in the plane
spanned by the vectors (b,b∗) and offset from the origin by
the vector b0.
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