Friday, Jan.30, 2015, EE 117, 230-320PM

NAME :

\qquad

CLOSED BOOK
 1 page of notes provided

All five questions carry equal weight.
Please show all work.
No credit for just writing down the answer, even if correct.
1.1. Describe how you obtain the relation

$$
\begin{equation*}
I=\frac{q}{h} M_{0}\left(\mu^{+}-\mu^{-}\right) \tag{A}
\end{equation*}
$$

starting from the general expression

$$
\begin{equation*}
I=\frac{q}{h} \int_{-\infty}^{+\infty} d E M(E)\left(f^{+}(E)-f^{-}(E)\right) \tag{B}
\end{equation*}
$$

and relate M_{0} to $\mathrm{M}(\mathrm{E})$. Please state your assumptions clearly.

Solution:

$$
\begin{aligned}
& \text { Assume } \quad f^{ \pm}(E)=\frac{1}{1+\exp \left(\frac{E-\mu^{ \pm}}{k T}\right)}, \quad \bar{\mu}=\frac{1}{2}\left(\mu^{+}+\mu^{-}\right) \\
& \text {and } \mu^{+}-\mu^{-} \ll k T . \\
& f^{+}(E)-f^{-}(E) \approx\left(\frac{\partial f}{\partial \mu}\right)_{\mu=\mu_{0}}\left(\mu^{+}-\mu^{-}\right)=\left(-\frac{\partial f_{0}}{\partial E}\right)\left(\mu^{+}-\mu^{-}\right)
\end{aligned}
$$

Substituting into (B) we obtain

$$
I=\frac{q}{h} \underbrace{\int_{-\infty}^{+\infty} d E M(E)\left(-\frac{\partial f_{0}}{\partial E}\right)}_{\equiv M_{0}}\left(\mu^{+}-\mu^{-}\right)
$$

which leads to (A) and expresses M_{0} in terms of $M(E)$.
1.2. Consider electrons obeying the relativistic energy-momentum relation

$$
E^{2}=m^{2} c^{4}+p^{2} c^{2}
$$

(a) Find the velocity as a function of the momentum.
(b) Find the momentum as a function of the velocity.

Solution:

(a)

$$
2 E \frac{d E}{d p}=2 c^{2} p \rightarrow \quad v \equiv \frac{d E}{d p}=\frac{c^{2} p}{E}=\frac{c^{2} p}{\sqrt{m^{2} c^{4}+p^{2} c^{2}}}
$$

$$
v=\frac{c p}{\sqrt{m^{2} c^{2}+p^{2}}}
$$

(b)

$$
v^{2}\left(m^{2} c^{2}+p^{2}\right)=c^{2} p^{2} \rightarrow p^{2}=\frac{m^{2} v^{2} c^{2}}{c^{2}-v^{2}} \rightarrow p=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

1.3. For a 3D conductor (area: A, Length: L) with an energy-momentum relation

$$
E^{2}=E_{g}^{2}+v_{0}^{2} p^{2}
$$

(a) find the functions $M(E), D(E)$ for positive $E(E>0)$.
(b) Is the relation

$$
D(E) v(E) p(E)=N(E) \cdot d
$$

satisfied?

Solution:

(a)

$$
\begin{aligned}
& N(E)=\frac{4 \pi}{3} A L\left(\frac{p}{h}\right)^{3}=\frac{4 \pi}{3 h^{3}} A L\left(\frac{E^{2}-E_{g}^{2}}{v_{0}^{2}}\right)^{3 / 2}=\frac{4 \pi}{3 h^{3} v_{0}^{3}} A L\left(E^{2}-E_{g}^{2}\right)^{3 / 2} \\
& D(E)=\frac{d N(E)}{d E}=\frac{4 \pi}{h^{3} v_{0}^{3}} A L\left(E^{2}-E_{g}^{2}\right)^{1 / 2} E \\
& M(E)=\pi A\left(\frac{p}{h}\right)^{2}=\frac{\pi A}{h^{2}}\left(\frac{E^{2}-E_{g}^{2}}{v_{0}^{2}}\right)
\end{aligned}
$$

(b) From (a), $\quad \frac{N(E)}{D(E)}=\frac{E^{2}-E_{g}^{2}}{3 E}$

Also, $v(E) p(E)=\frac{d E}{d p} p=\frac{2 v_{0}^{2} p^{2}}{2 E}=\frac{E^{2}-E_{g}^{2}}{E}$
Hence,

$$
D(E) v(E) p(E)=N(E) .3
$$

The relation is satisfied.
1.4. Consider an otherwise ballistic channel with M modes having a scatterer in the middle where only a fraction T of all the electrons proceed along the original direction, while the rest $(1-\mathrm{T})$ get turned around.

Determine the values of μ^{+}and μ^{-}on either side of the scatterer in terms of μ_{1}, μ_{2} and T

Solution:

Since

$$
I^{ \pm}=(q M / h) \mu^{ \pm}
$$

we can write

$$
\begin{aligned}
& \mu_{2}^{+}=T \mu_{1}^{+}+(1-T) \mu_{2}^{-} \\
& \mu_{1}^{-}=(1-T) \mu_{1}^{+}+T \mu_{2}^{-}
\end{aligned}
$$

Assume $\mu_{1}^{+}=\mu_{1}$ and $\mu_{2}^{-}=\mu_{2}$:

$$
\begin{aligned}
\mu_{2}^{+}=\mu_{2} & +T\left(\mu_{1}-\mu_{2}\right) \\
\mu_{1}^{-} & =\mu_{1}-T\left(\mu_{1}-\mu_{2}\right)
\end{aligned}
$$

1.5. Evaluate the left hand side of the Boltzmann equation

$$
\frac{\partial f_{0}}{\partial t}+v_{z} \frac{\partial f_{0}}{\partial z}+F_{z} \frac{\partial f_{0}}{\partial p_{z}}
$$

where f_{0} is the equilibrium Fermi function with $E=\varepsilon\left(p_{z}\right)+U(z)$.

$$
f_{0}(E) \equiv \frac{1}{1+\exp \left(\frac{E-\mu_{0}}{k T}\right)}
$$

Note $: v_{z} \equiv \frac{d \varepsilon}{d p_{z}}, \quad F_{z} \equiv-\frac{d U}{d z}$

Solution:

$$
\begin{aligned}
& v_{z} \frac{\partial f_{0}}{\partial z}+F_{z} \frac{\partial f_{0}}{\partial p_{z}}=\frac{\partial f_{0}}{\partial E}\left(v_{z} \frac{\partial E}{d z}+F_{z} \frac{\partial E}{d p_{z}}\right)=\frac{\partial f_{0}}{\partial E}\left(v_{z} \frac{d U}{d z}+F_{z} \frac{d \varepsilon}{d p_{z}}\right)=0 \\
& \text { since } \quad v_{z} \equiv \frac{d \varepsilon}{d p_{z}}, F_{z} \equiv-\frac{d U}{d z}
\end{aligned}
$$

