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4 [ Basis functions

4.1. As a computational tool
4.2. As a conceptual tool
4.3. Equilibrium density matrix
4.4. Supplementary notes:
Density matrix, Perturbation theory

We have seen that it is straightforward to calculate the energy levels for atoms
using the SCF method, because the spherical symmetry effectively reducesit to a one-
dimensiona problem. Molecules on the other hand do not have this spherical
symmetry and a more efficient approach is needed to make the problem numerically
tractable. The concept of basis functions provides a convenient computationa tool for
solving the Schrodinger equation (or any differential equation for that matter). At the
same time it is aso a very important conceptua tool that is fundamenta to the
guantum mechanica viewpoint. In this chapter we attempt to convey both these
aspects.

The basic ideaisthat the wavefunction can in general be expressed in terms of a
set of basis functions, upy(T)

M
O(F) = D, OmUm(P)

m=1

We can then represent the wavefunction by a column vector consisting of the
expansion coefficients

®(F) — {01 ¢2 - - dm}

In spirit, thisis not too different from what we did in Chapter 1 where we represented
the wavefunction by its values at different points on a discrete lattice:

o) - {@o@f) @) - Oy}
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However, the differenceisthat now we have the freedom to choose the basis function
um(7) : if we choose them so that they look much like our expected wavefunction,
then we can represent the wavefunction accurately with just a few terms, thereby
reducing the size of the resulting matrix [H] greatly. This makes the approach useful
as a computational tool (smilar in spirit to the concept of “shape functions’ in the
finite element method [2.2]) as we illustrate with a ssimple example in Section 4.1.

But the concept of basis functions is far more general. One can view them as
the coordinate axes in an abstract Hilbert space as described in Section 4.2 and we
will illustrate the power and versatility of this viewpoint in Section 4.3 using the
concept of density matrix in Section 4.3.

4.1. (Basis functions) as a computational tool
The basic formulation can be stated fairly simply. We write the wavefunction
in terms of any set of basis functions upy, (7):

DF) = D Om Un(P) (4.1.1)
m
and substitute it into the Schrodinger equation E (F) = Hqp ®(F) to obtain
Ezq)m Um () = Z Om Hop Um(F)
m m
Multiply both sides by u," () and integrate over al ¥ toyield
EZw,snm Om = Z Hom Om
m m

which can be written as a matrix equation

E[SI{¢o} = [HI{o} (412
where Snm = J.dF Un” (F) U (F) (4.1.39)
Hm = J df u, (F) Hop Um(F) (4.1.3b)
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To proceed further we have to evduate the integras and that is the most time-
consuming step in the process. But once the matrix elements have been calculated, it is
straightforward to obtain the eigenvalues E, and eigenvectors {®,} of the matrix.
The eigenfunctions can then be written down in “real space” by substituting the
coefficients back into the origina expansionin Eq.(4.1.1):

() = 3 don Un(P) (4.1.4)

A f
N=o n

where Z, isaconstant chosen to ensure proper normalization:

1= [di 0y (7)) > Zg=2.2 0na Oma S (4.1.5)
nm

Egs.(4.1.1)-(4.1.5) summarize the basic mathematical relations involved in the use of
basis functions.

A specific example: To understand the underlying physics and how this works in
practice let us look at a specific example. In Section 3.3.3 we stated that the lowest
energy eigenvaue of the Schrodinger equation including the two nuclear potentials
(Fig.4.1.1) but excluding the self-consistent potential

2
Ego Pao(T)= [— V2 UN () + Uy (f)) Poo(7) (4.16)

isapproximately givenby (E; = - Eg=-13.6eV)

Ego= E1+_— (4.1.7)

1-(1+Rg) e 2o

, b= - 2Eg(1+Rg) e RO
Ro

where a= - 2Eg

and S = e_RO 1+ R0+(R02/3)) ) Ro = R/ag
R being the center-to-center distance between the hydrogen atoms
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We will now use the concept of basis functions to show how this result is obtained
from EQ.(4.1.6).

Fig.4.1.1. Uy and Uy ' are the
Coulombic potentials due to the

left and right nuclei of a H2

molecule respectively. % FR ﬁN'

Note that the potential U(T) = UN(T) + UN’ (T) in EQq.(4.1.6) is not
spherically symmetric, unlike the atomic potentials we discussed in Chapters 2 and 3.
This means that we cannot simply solve the radial Schrodinger equation. In generd,
we have to solve the full three-dimensional Schrodinger equation, which is numericaly
quite chalenging and the problem is made tractable by using basis functions to
expand the wavefunction. In the present case we can use just two basis functions

O(F)= o u (f) + or Uur(r) (4.1.8)

whereup_(7) and UR(T) represent a hydrogenic 1s orbital centered around the left and
right nuclel respectively (see Fig.4.1.2).

Fig.4.1.2. A convenient basis set
for the H2 molecule consists of two

'1s' orbitals centered around the

left and right nuclei respectively. /&Z\

This means that

2
Eyu (V)= {- Zh—m Vi UN(?)] u (1) (4.1.99)
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2
and E1ur(f)= [— ;l—m V2 UN'(?)] uR(r) (4.1.9b)

The ansatz in Eq.(4.1.8) is motivated by the observation that it clearly describes the
eigenstates correctly if we move the two atomsfar apart: the eigenstates are then given

by
(o 0g)=(1 0) and (o0 o¢g)=(0 1)

It seems reasonable to expect that if the bond length R is not too short (compared to
the Bohr radius ag) Eq.(4.1.8) will still provide a reasonably accurate description of

the correct elgenstates with an appropriate choice of the coefficients (o,  oR).

Since we have used only two functions u and ur to express our
wavefunction, the matrices [S] and [H] in EQ.(4.1.2) are smple (2x2) matrices whose
elements can be written down from Eq.(4.1.3a,b) making use of Egs.(4.1.9a,b):

1 s Ei+a  E;s+b
S = and H = (4.1.10)

s 1 Eis+Db Ei+a
whee s = [diu "(F)ur(f) = [dFug (F)up (F) (4.1.119)
a = [diug (HUN (P u(F) = [dFf ug’ (F) Un(F) ur(T) (4.1.11b)
b = [dfu " (F)UNFuR(P) = JdFu"(F) Un (F) ur(P)

= [dFuR" (F)UN(Pu (F) = [dFur"(F)Upn (F)ug (F) (4.1.11¢)

Hence Eq.(4.2.2) becomes

£ oL | [1 }_1 [E1+a Eis+ b]

or) ILs 1 E;stb Ej+a

from which it is straightforward to write down the two eigenvaues - the lower one is
called the bonding level (B) and the higher oneis called the anti-bonding level (A) :

oL
[ ¢R] (4.1.12)
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a+b a—-b
EB= E1+ 1rs ad Ea= B1+— (4.1.13)

The quantities a, b and s can be evauated by plugging in the known basis functions
uL(7), ur(7) and the nuclear potentials UN(7) and UN '(7) into Egs.(4.1.11a,b,c).
The integrals can be performed analytically to yield the results stated earlier in
Eq.(4.1.7).

The wavefunctions corresponding to the bonding and antibonding levels are
given by

(oL or)g= (1 ) and (0L 0R) = @ -1

ap (I
Sl A

which represent a symmetric (B) and an antisymmetric (A) combination of two 1s
orbitals centered around the two nuclei. Both electrons in a H, molecule occupy the

symmetric or bonding state whose wavefunction can be written as

1

®pp(r) = ﬁ[uL(F)"'UR(F)] (4.1.14)
where - —|T=TL . T = —(Ry/2)2
u ()= esexp—‘ | L= ~(Rof2)
\ T %0
_|F-F .
\/nao

The constant Z has to be chosen to ensure correct normalization of the wavefunction:
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1= .[df Dgg (F) Pgo(T) = 2(12+ 9

Z=2(1+9)

The electron density n(f) in a H, molecule is given by | ®gq(F) | 2 multiplied by
two since we have two electrons (one up-spin and one down-spin) with this

wavefunction. Fig.4.1.3 shows a plot of the eectron density along a line joining the
two nuclel.

2x10

Fig.4.1.3. Plot of electron
density along the axis

joining the two hydrogen

=

atoms assuming they
are separated by the

Electron density (/m”3) --->

equilibrium bond distance
of R = 0.074 nm.

1O

How can we get accurate results using just two basis functions ? If we were to start
from the Schrodinger equation and use a discrete lattice representation as we did in
Chapters 1 and 2, then we would need a fairly large number of basis functions per
atom. For exampleif the lattice points are spaced by 0.5 A and the size of an atom is

2.5 A, then we need 53 = 125 latice points (each of which represents a basis
function), since the problem is a three-dimensional one. What do we lose by using
only one basis function instead of 125 ? The answer is that our results are accurate
only over alimited range of energies.

To seethis, suppose we were to use not just the 1s orbital as we did, but also
the 2s, 2pyx, 2py, 2pz, 3s, 3px, 3py and 3pz orbitals (see Fig.4.1.5). We argue that the
lowest eigenstates will ill be essentially made up of 'ls wavefunctions and will
involve negligible amounts of the other wavefunctions, so that fairly accurate results
can be obtained with just one basis function per atom. The reason is that an off-
diagonal matrix element M modifies the eigenstates of a matrix
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Ey M
M E,

significantly only if it is comparable to the difference between the diagona eements,
thatis, if M > |E; - E»|. Thediagonal elements are roughly equal to the energy levels
of the isolated atoms, so that |E; - Ep| is ~ 10 eV if we consider say the '1s and the
'2S levels of a hydrogen atom. The off-diagonal element M depends on the proximity
of the two atoms and for typica covaently bonded molecules and solids is ~ 2 &V,
whichissmaler than |E; - E;|. Asaresult the bonding level is primarily composed of

'1s wavefunctions and our trestment based on a 2x2 matrix is fairly accurate. But a
proper treatment of the higher energy levels would require more basis functions to be
included.

Fig.4.1.5. Eigenstates of a H2 ————— 3s, 3p
molecule when the atoms are not

too close. All these states could ———— 2s, 2p
be used as basis functions for a

more accurate treatment of the

hydrogen molecule.
1s

Ab-initio and semi-empirical models : The concept of basis functions is widdly used
for ab initio calculations where the Schrodinger equation is solved directly including a
self-consistent field. For large molecules or solids such caculations can be
computationaly quite intensive due to the large number of basis functions involved
and the integrals that have to be evauated to obtain the matrix elements. The integrals
arising from the self-consistent field are particularly time consuming. For this reason,
semiempirical approaches are widely used where the matrix elements are adjusted
through a combination of theory and experiment. Such semi-empirical approaches can
be very useful if the parameters turn out to be "transferable”, that is, if we can obtain
them by fitting one set of observations and then use them to make predictions in other
situations. For example, we could calculate suitable parametersto fit the known energy
levels of an infinite solid and then use these parameters to caculate the energy levels
in afinite nanostructure carved out of that solid.
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4.2. (Basis functions) as a conceptual tool

We have mentioned that al practica methods for solving the energy levels of
molecules and solids usualy involve some sort of expansion in basis functions.
However, the concept of basis functions is more than a computational tool. It
represents an important conceptua tool for visudizing the physics and developing an
intuition for what to expect. Indeed the concept of a wavefunction as a superposition
of basisfunctionsis central to the entire structure of quantum mechanics aswe will try
to explain next.

Vector space vs. Hilbert space: It isuseful to compare Eq.(4.1.1) with the expression
for an ordinary three-dimensional vector Vv in terms of the three unit vectors %, y and

V=V X+Vyy+V,Z <-mmmmee- > ® = 01U+ Uy +OgUuz+eee

We can view the wavefunction as a state vector in an N-dimensional space cdled the
Hilbert space, N being the totd number of basis functions up, (7). The op's In
Eq.(4.1.1) are like the components of the state vector ,® while the up,(7)'s are the
associated unit vectors along the N coordinate axes. Choosing a different set of basis
functions up, () is like choosing a different coordinate system: the components ¢,
along the different axes al change, though the state vector remains the same. In
principle, N is infinite, but in practice we can often get accurate results with a
manageably finite value of N. We have tried to depict this analogy in Figs.4.2.1a and
b but it is difficult to do justice to an N-dimensiona vector (N > 3) on two-
dimensiona paper. In the Dirac notation, which is very convenient and widely used,
the state-vector associated with wavefunction @(7) is denoted by a "ket" |®) and the
unit vectors associated with the basis functions up, (7) are aso written as kets |m). In
this notation the expansion in terms of basis functions (see Eq.(4.1.11)) iswritten as

(Dirac notation)
D(F) = D OmUn(P) e > @) = D omIm)  (4.2.1)
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Fig.4.2.1. (a) An ordinary vector V in three-dimensional space can be
expressed in terms of its components along x, y and z. (b) The state-vector

®(r) can be expressed in terms of its components along the basis

functions up(r).

Scalar product: A central concept in vector algebraisthat of the scalar product :

AB= AB,+AB,+AB, = > ApBn
m=x,y,z

The corresponding concept in Hilbert space isthat of the overlap of any two functions
f(¥) and g(7):

(Dirac notation)

IR NG (o E— > oy

The similarity of the overlap integral to ascaar product can be seen by discretizing the
integral :

[ Mo 2 Y 1 (fn) 9lim)

Supriyo Datta, Purdue University



Chapter 4/ Basis functions 121

In the discrete | atti ce representation (see Fig.4.1.4) the "component”, fm of f(7) aong

um(¥) isgiven by f(Fm) just as Am represents the component of the vector A along

m:

[df (P o) = @ 3 fm' gm cf. AB= ¥ ApBn
m m=X,y,z

One difference hereisthat we take the complex conjugate of one of the functions (this
is not important if we are dealing with real functions) which is represented by the
"bra" (f| as opposed to the "ket" |g). The scalar product isrepresented by juxtaposing

a"brd" and a"ket" asin (f|g).

Orthogonality : Coordinate systems are said to be orthogonal if h.m = &, where
theindicesm, n stand for x, y or zand §,,,, isthe Kronecker deltawhich is defined as

dqm =1 ifn=m
=0 ifnzm (4.2.2)

Thisisusudly true (for example, x.y = y.z = z.x = 0) but it is possible to work with
non-orthogonal coordinate systems too. Similarly the basis functions u,,(7) are said
to be orthogonal if the following relation is satisfied :

(Dirac notation)
[ up (Aum(®) = 8pp - > (njm})=38nm (4.2.3)

Note that the basis functions corresponding to the discrete lattice representation
(Fig.4.1.4) are orthogonal, but the one we used for the hydrogen molecule (see
Fig.4.1.2) are NON-orthogonal since

[ df u*(F) ur(F) = e R0 (1+Rp+(Rg2/3) # O.

1l
(2]

In genera
(Dirac notation)

[dF up' (A um(F) = Sym === > (njm) = Spm (4.2.4)

|

wn
S
3
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Orthogonalization: Given a non-orthogonal set of basis functions {u,(r)}, we can
define another set

Gi(F) = Z[gl/z]mun(r) (4.2.5)
n

which will be orthogonal. Thisis shown asfollows

where we have made use of Eq.(4.2.4). This means that if we use the new set {G; ()}

asour basis, then the overlap matrix [§] =[], where[l] is the identity matrix which is
a diagona matrix with ones on the diagonal. This is a property of orthogonal bases
functions which makes it conceptually easier to deal with.

Even if we start with a non-orthogonal basis, it is often convenient to
orthogonalize it. What we might lose in the process is the local nature of the original

basis which makesit convenient to visudize the physics. For example, the {u,(F)} we
used for the hydrogen molecule were localized on the left and right hydrogen atoms
respectively. But the orthogonalized basis{{;(f)} will be linear combinations of the
two and thus less loca than {u,(F)}. As arule, it is difficult to find basis functions

that are both loca and orthogona. From hereon we will generally assume that the
basis functions we use are orthogonal.

Operators : An operator like Hop acting on a state vector changes it into a different

state vector - we could say that it "rotates" the vector. With ordinary vectors we can
represent arotation by amatrix :

Ax| _ [Rxx Rxy {Ax}
A'y Ryx Ryy Ay
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where for smplicity we have assumed a two dimensiona vector. How do we write
down the matrix [R] corresponding to an operator Rop ? The genera principle is the

following Rnm = #.(Rop). For example, suppose we consider an operator that

rotates a vector by an angle 6. We then obtain

Rxx = x.(ROpi) = X.(Xcosb+Yysin®) = cosb
Ryx = 9.(Rop§<) = y.(Xcosb+ysin) = sind
Rxy = 2.(R0p§/) = X.(-Xsin@+ycosh) = - sind
Ryy = 9.(R0p§/) = y.(-xsin@+Yycosh) = cos6

The matrix representation for any operator App in Hilbert space is written using a
Similar prescription :
(Dirac notation)

[Alam = ] dF up"(F)(Agp Um(P)) - > [Algm = (n[Agpm)(4.2.5)

Constant operator : What is the matrix representing a constant operator, one that
smply multiplies a state vector by a constant C ? In generd, the answer is

[Clom = CJdF uy' Dum(® = CIS], (4.2.6)

m
which reducesto C [I] for orthogonal bases.

Matrix representation of the Schrodinger equation: The matrix representation of
the Schrodinger equation obtained a the end of the last section (see Egs.(4.1.2),

(4.1.3ab))
E®(F)=Hgp O(F) > E[sl{o} = [H]{o} (4.2.7)

can now be understood in terms of the concepts described in this section. Like the
rotation operator in vector space, any differential operator in Hilbert space has a matrix
representation. Once we have chosen a set of coordinates or basis functions, Hop

becomes the matrix [H] while the constant E becomes the matrix E[S]:
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[Slom = (nlm) = [ di uy (F) up(F) (4.2.83)
[Hlm = (n[Hopm) = [ dF up"(F)(Hop um(P)) (4.2.8b)
We could orthogonalize the basis set following Eq.(4.2.5), so that in terms of the

orthogona basis {{; ()}, the Schrodinger equation has the form of a standard matrix
eigenvalue egquation:

efo} = [H]{é}
where the matrix elements of [|:|] aregiven by
(Al = | o &) (Hop 1))

Transformation of bases: Suppose we have expanded our wavefunction in one basis
and would like to change to adifferent basis:

OF) = D OmUn(® . s o) = Zq)'i ui(F) (4.2.9)

Such a transformation can be described by a transformation matrix [C] obtained by
writing the new basisin terms of the old basis:

() = 3 Cpyi Um(F) (4.2.10)
m
From EQgs.(4.2.9) and (4.2.10) we can show that

om = ZCmi® - > {o} = [cl{o]} (4.2.119)

Similarly we can show that any matrix [A"] in the new representation is related to the
matrix [A] in the old representation by
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A. = Yy C
j

i Apm Crmi > [A'] = [C]*[A][c] (4.2.11b)

nj

Unitary transformation : Thereisaspecial class of transformations which conserves
the"norm" of astate vector that is,

S O bm = X0 0> foy {0} = {01 {o} (4.2.12)
m
Substituting for {0} from Eq.(4.2.11a) into Eq.(4.2.12)

bl e} = o o} - >[C]*[C] = I (4.2.13)

A matrix [C] that satisfies this condition (EQ.(4.2.13)) is said to be unitary and the
corresponding transformation is called a unitary transformation.

Hermitian operators : The matrix [A] representing a Hermitian operator Agp is
Hermitian (in any representation) which means that it is equal to its conjugate

transpose [A™] :
[A]=[A] T thatis Amn = Anm” (4.2.14)

If Agpisafunctionlike U(r) thenit is easy to show that it will be Hermitian as long
asitisreal.

Wm' = [ & un OUO D] = Ul

If Aop is adifferential operator like d/dx or d2/dx2 then it takes a little more work to
check if it is Hermitian or not. An easier approach is to use the discrete lattice
representation that we discussed in Chapter 2. EQ.(2.3.1) shows the matrix

representing d2/ dx2 and it is clearly Hermitian in this representation. And it can be
shown that a matrix that is Hermitian in one representation will remain Hermitian in
any other representation. The Hamiltonian operator is Hermitian since it is a sum of
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Hermitian operatorslike d2/dx2 , d2 / dy2 and U(F). An important requirement of
quantum mechanics is that the eigenvalues corresponding to any operator Agp

representing any observable must be real. This is ensured by requiring al such
operators App to be Hermitian (not just the Hamiltonian operator Hop which

represents the energy). The eigenvalues of a Hermitian matrix areredl.
Another useful property of a Hermitian matrix is that if we form a matrix [V]
out of al the normalized eigenvectors

then this matrix will be unitary, that is, [V] * [V] = [I]. Such a unitary matrix can be
used to transform all column vectors {¢} and matrices [M] to anew basis that uses the
eigenvectors asthe basis:

{¢}neN = [V]+{¢}old A > {q)}old = [V]{q)}new
(4.2.15)

Mlpew = V1T [Mlgg [Vl <===> [Mlgq = [VI[M]pgy [V]T

If [V] isthe eigenvector matrix corresponding to a Hermitian matrix like [H], then the
new representation of [H] will be diagonal with the eigenvalues Em dong the diagonal

E10 0 0 -
0 E;0 0 -

H] = viITHIvE = (g e

(4.2.16)

For this reason the process of finding eigenfunctions and eigenvaluesis often referred
to as diagonalization.
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4.3. Equilibrium density matrix

The density matrix is one of the central concepts in statistical mechanics
which properly belongs to Chapter 7. But the reason | am bringing it up in this
chapter is that it provides an instructive example of the concept of basis functions.
Let me start by briefly explaining what it means. In Chapter 3 we caculated the
electron density, n(r) in multielectron atoms by summing up the probability densities
of each occupied eigenstate‘ o.” :

M= Y | DM

occ o

This is true a low temperatures for closed systems having a fixed number of
electrons which occupy the lowest available energy levels. In generd, however, states
can be partially occupied and in genera the equilibrium electron density can be
written as

M= X foleq )| De(n) | (43.1)

o

where fo(E) = [1+ exp(E/kgT)] ~Lis the Fermi function (Fig.1.1.3) indicating the
extent to which a particular state is occupied: “0” indicates unoccupied states, “ 1”
indicates occupied states, while a value between 0 and 1 indicates that the state is
sometimes occupied and sometimes unoccupied.

Could we write a “wavefunction” ¥(r) for this multielectron system such
that its squared magnitude will give us the electron density n(r)? One possibility is
towriteit as

Y()= 2, CyPy(M) (4.3.2)

where | C, | 2 - fo(eo, —1L). But thisis not quite right. If we square the magnitude of
this multielectron “wavefunction” we obtain
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M= [W0) %= X CoCh Pulh) B(F)
o P
whichisequivalent to Eq.(4.3.1) if and only if,

2 *
|Co|“= folea—M) = fqy  CuCp=0 , a=P (4.3.3)

Thisisimpossible if we view the coefficients C,, as ordinary numbers — in that case

CoCp Must equal | fof and cannot be zero unlessboth C,, and Cp are zero. If we

wish to write the multidectron wavefunction in the form shown in Eq.(4.3.2) we
should view the coefficients C,, as stochastic numbers whose correlation coefficients
are given by Eq.(4.3.3).

So instead of writing a wavefunction for multielectron systems, it is common

to write down a complete matrix p (o.,) indicating the correlation CaCE between
every pair of coefficients. This matrix p is cdled the density matrix and in the
eigenstate representation, we can write its elements as (see Eq.(4.3.3))

p(ap) = fy 8oc[?: (4.3.9)

where 8, isthe Kronecker delta defined as dop=1 a=f
60([3 =0, « ¢[3

We can rewrite EQ.(4.3.1) for the electron density, n(r) in the form

n(F) = 2, 2. plep) Po () 0 () (435)
o P

which can be generalized to define
pIET) = 2 2 p(eB) @ (F) @ (7) (4.36)
o P

such that the electron density n(7) is given by itsdiagona elements:
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n(f) = [p(f,F)]._. (4.3.7)

Now the point | want to make is that Eq.(4.3.6) represents a unitary
transformation from an eigenstate basis to a real space basis. This is seen by
noting that the transformation matrix [V] is obtained by writing each of the eigenstates
(the old basis) as a column vector using the position (the new basis) representation :

M o = o)

r,o
and that this matrix is unitary : V-1 = v+
= v = v = e,
o, o,T

so that Eq.(4.3.6) can be written in the form of a unitary transformation:

BIF.T) = 2, DV(T,0)p(ap) VFBT) = P=VpV"
o B

This leads to a very powerful concept: The density matrix p at equilibrium
can be written asthe Fermi function of the Hamiltonian matrix (I: Identity matrix
of the same size as H):

p = fo(H-pl) (4.3.8)

Thisisageneral matrix relation that isvalid in any representation. For example if we
use the eigenstates o of H asabasisthen [H] isadiagonal matrix:

81 O o0 --
0 82 0o ...
HI=]0 0 e,
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fo(ez-u) O 0
. fo (€0 —1) 0
andsois[p®)]:  [p(E)] = o

0 0 foles—n)

This is exactly what EQ.(4.3.4) tells us. But the point is that the relation given in
Eq.(4.3.8) is vdid, not just in the eigenstate representation, but in any representation.
Given the matrix representation [H], it takes just three commands in MATLAB to
obtain the density matrix:

[V, D] = eig (H);
rho = 1./(1 + exp((diag(D) - mu)./kT));
rho =V * diag(rho) * V’

Thefirst command calculates a diagonal matrix [D] whose diagona elements are the
eigenvalues of [H] and a matrix [V] whose columns are the corresponding
eigenvectors. In other words, [D] isthe Hamiltonian [H] transformed to the eigenstate

basis = D = V'HV
The second command gives us the density matrix in the eigenstate representation,
which is easy since in this representation both [H] and [p] are diagona. The third

command then transforms [p] back to the original representation.

Fig.4.3.1 shows the equilibrium electron density for a 1-D box modeled with a
discrete lattice of 100 points spaced by 2A, with u= 0.25 eV. The Hamiltonian [H] is
a (100x100) matrix which can be set up following the prescription in Sections 2.2,
2.3. the density matrix is then evaduated as described above and its diagona elements
give us the electron density n(x) (times the lattice congtant, ‘a’). Note the standing
wave patterns in (c) and (d) which are absent when we use periodic boundary
conditions as seen from (e) and (f). Figs.(e) and (f) also show the standing wave
patterns in the electron density when alarge repulsive potential

U d(x—(L/2)) where Ug =20 eV-A

isincluded at the center of the box.
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(b) Energy eigenvalues and
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Fig.4.3.1. Equilibrium electron density for a 1-D box modeled with a
discrete lattice of 100 points spaced by 2A.

datta@purdue.edu

All Rights Reserved



Quantum Transport: Atom to Transistor 132

Note that the density matrix can look very different depending on what basis
functions we use. In the eigenstate representation it is diagona since the Hamiltonian
isdiagonal, but in the redl space lattice representation it has off-diagonal elements. In
any basis ‘m’, the diagond éements p(mm) tell us the number of eectrons
occupying the state 'm’. In a real space representation, the diagona eements p(7,7)
give usthe electron density n(r). Thetrace (sum of diagonal elements) of p, which is
invariant in al representations, gives usthe total number of electrons, N:

N=Trace(p) (4.3.9

If we are only interested in the electron density, then the diagonal elements of the
density matrix are all we need. But we cannot “throw away” the off-diagonal
elements; they are needed to ensure that the matrix will transform correctly to another
representation. Besides, depending on what we wish to calculate, we may need the off-
diagonal elementstoo (see Section 4.4.1).
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4.4. Supplementary notes

4.4.1. Density matrix
It is common in quantum mechanics to associate every observable ‘A’ with an
operator Agp for which we can find a matrix representation [A] in any basis. The

expectation value (A) for this observable (that is, the average value we expect to get
in a series of measurements) is given by

(A= | dif ¥ AgpW

Substuting for the wavefunction in terms of the basis functions from Eq.(4.3.2), we
can show that

<A> = 2 Z COLCB* de (I)B*Aopq)oc
o P

so that (A)= ZZpaB Apy = Trace[pA]
o B

We could use this result to evaluate the expectation value of any quantity, even if the
system is out of equilibrium, provided we know the density matrix. But what we
have discussed here isthe equilibrium density matrix. It is much harder to calculate
the non-equilibrium density matrix as we will discuss later in the book.

Plane-wave versus sine-cosine representations. Consider now a conductor of
length ‘L’ having just two plane wave (‘pw’) states

P, (X) :i et and W (x) :i g IKx
AL AL

+ —
The current operator inthisbasisisgiven b -
g TN 30p] L = | kim0
- 0 —#k/m
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+ —
and we could write the density matrix as
[p] + = fy 0
0 f

where f, and f_ are the occupation probabilities for the two states. We wish to

transform both these matrices from the '+’ basisto a ‘cs' basis using cosine and

sine states;

‘I’C(x):\§ coskx and ‘Ps(x):\/ﬁsinkx

It is straightforward to write down the transformation matrix [V] whose columns
represent the old basis (+,-) in terms of the new basis (c,s):

11 1
vl = TELi —i}

so that inthe *cs' representation

'c 's
Pl = VIPLIVIT = 2| fost —if-f)
—i(f,—f)  f+f
q c 'S
u Pop) o = V1[3op]  [VIT = 0 —ihk/mL
B +ink/mL 0

It is easy to check that the current <J>= Trace [pJqp] is the same in either

representation:

<J> = (-q/L) (hk/m)[f, —f_]
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This is expected since the trace is invariant under a unitary transformation and thus
remains the same, no matter which representation we use. But the point to note is that
the current in the cosine-sine representation arises from the off-diagonal elements of
the current operator and the density matrix, rather than the diagonal elements. The
off-diagonal elements do not have an intuitive physical meaning like the diagona
elements. As long as the current is carried by the diagona elements, we can use a
semiclassica picturein terms of occupation probabilities. But if the ‘action’ isin the
off-diagonal elements then we need a more general quantum framework. (I am
indebted to A.W. Overhauser for suggesting this example)

4.4.2. Perturbation theory

Suppose we wish to find the energy levels of a hydrogen atom in the
presence of an electric field F applied aong the z-direction. Let us use the eigenstates
1s, 2s, 2px , 2py and 2pz as our basis set and write down the Hamiltonian matrix. If
the field were absent the matrix would be diagonal :

Is 2s 2px 2py 2pz

EL, O 0 0 O
O E, 0 0 0O

(Ho = 0O 0 E, 0 0O
0O 0 0 E, O
0 0 0 0 E,f

whereEg=13.6€eV, E1=-Egand E2 =- EQ/ 4. Thedectricfidd leads to a matrix
[ Hg] which hasto be added to [H]. Its elements are given by

2 *
[HEl i = qFTdrrz]L sinodo rdq) up (F) rcos® um(F)
0 0 0

Using the wavefunctions

us = +1/mag e/

Ups = \1/32na03[2—é]e‘”25‘0
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Upp, = \1/16mag’
Uzp, = \|1/16may®
Upp, = \1/32mag°

e7"/220 5ng cosg
e/ gng sing

e /220 o059

LI~ &=~ &=

we can evauate the integral s straightforwardly to show that

1s  2s 2px 2py 2pz

0 0o 0 0o A]
0 0 0 0 B
0 0 0 0 0
[HE] =
0 0 0 0 0
A B 0 0 0]
where A and B are linear functions of the field:
A = (128v2/243)agF, B = -3aF
Hence Is 25 2pz 2px 2py

0O 0 E, O
0O 0 0 E,]

=]
0
[HO] + [Hg] = A B E 0 O
0
0

Note that we have relabeled the rows and columns to accentuate the fact that 2pyx and
2py levels are decoupled from the rest of the matrix and are unaffected by the field,
while the 1s and 2s and 2pz levelswill be affected by the field.

Degenerate perturbation theory: If the field were absent we would have one
eigenvalue E1 and four degenerate eigenvalues E2. How do these eigenvalues change
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asweturn up thefield ? As we have mentioned before the eigenvalues are more or less
equal to the diagonal values unless the off-diagonal term Hmpn becomes comparable to

the difference between the corresponding diagona terms (Hmm - Hnn). This means
that whenever we have two degenerate eigenvalues (that is, Hmm - Hnn = 0) even a
small off-diagonal eement Hmp has a significant effect. We thus expect the 2s and
2pz leves to be sgnificantly affected by the field since they are degenerate to Start

with. We can get avery good approximation for these eigenvalues simply by looking
at a subset of the [H] matrix containing just these levels:

2s 2pz
_ E, B
ol +[Hel = [2% ¢ |

It is easy to show that the eigenvalues are E = E2 + B and the corresponding

eigenvectors are
|2s) - |2pz) and  |2s)+|2p,)

This approximate approach (known as degenerate perturbation theory) describes the
exact eigenvaues quitewell (see Fig.4.4.1) as long as the off-diagona elements (like
A) coupling these levels to the other levels is much smaller than the energy difference
with these levels (like E2 - E1).

Fig.4.4.1. Energy of 2s - 2pz level

due to an applied electric field, F.
Solid line shows the results

Energy (ev) >

obtained by direct diagonalization
while '0o' and 'x' show perturbation

theory results E = E2 £ B.

Non-degenerate perturbation theory: How isthe 1s eigenvalue affected ? Since there
are no other degenerate levels the effect is much less and to first order one could
simply ignore the rest of the matrix:
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1s
[Hol + [HEF] = [E4]

and argue that the eigenvalue remains E1. We could do better by "renormalizing” the

matrix as follows. Suppose we partition the [H] matrix and write

Hlfo}=Efo} > [ T2 {0 e i

Ho1 Hxo | |02 o2

where [H11] denotes the part of the matrix we wish to keep (the '1s block in this
case). Itiseasy to eliminate {¢,} to obtain

[H]{o1} =E{o1}

where [H']Z [Hll]+[H12][E|—H22] _1H21

| being an identity matrix of the same size as H22. We haven't gained much if we till
have to invert the matrix El - H22 including its off-diagonal elements. But to lowest
order we can smply ignore the off-diagonal elements of H22 and write down the

inverse by inspection. In the present case, this gives us

2
. 1/ (E-Ey) 0 0\_ A
[Hl= B+ (0 A)[ 0 1/(E—E2)][A) 1+E—E2

To lowest order, the eigenvalue E is approximately equal to E1, so that

[H]~ Ey+(A%/(E1-E)))

showing that the correction to the eigenvaue is quadratic for non-degenerate states,
rather than linear asit is for degenerate states. This approximate approach (known as
non-degenerate perturbation theory) describes the exact eigenvalues quite wel (see
Fig.4.4.2).
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-13.5916 -

Fig.4.4.2. Energy of 1s level due 135017

-13.5917 1

to an applied electric field, F. Solid

£-13.5017

line shows the results obtained by Saser7

direct diagonalization while the 'x' s
5-13.59].8.

denotes the perturbation theory

-13.5918 L

results E = E1 + A2 / (E1 - E2). 135018,

-13.5918

Exercises

E.4.1. Plot the electron density n(x) in a hydrogen molecule along the axis joining the
two Hydrogen atoms assuming they are separated by the equilibrium bond distance of
R =0.074 nm and compare with Fig.4.1.3.

E.4.2. Cdculate the equilibrium eectron density n(x) in a one-dimensional box

model ed with discrete lattice of 100 points spaced by 2A and compare with each of the
results shown in Fig.4.3.1 (c)-(f).
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