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11 / Atom to transistor

11.1. Quantum transport equations

11.2. Physics of Ohm’s law

11.3. Where is the heat dissipated ?

11.4. Where is the voltage drop?

In Chapter one, I used the generic structure shown in Fig.11.1.1a to focus and

motivate this book. We spent Chapters 2 through 7 understanding how to write down a

Hamiltonian matrix [ H0] for the active region of the transistor structure whose eigenvalues

describe the allowed energy levels (see Fig.11.1.1b). In Chapter 8, I introduced the

broadening [ Γ1] and [ Γ2] arising from the connection to the source and drain contacts. In

Chapter 9, I introduced the concepts needed to model the flow of electrons, neglecting phase-

breaking processes. while in Chapter 10 we discussed the nature and meaning of phase-

breaking processes, and how the resulting inflow and outflow of electrons is incorporated into

a transport model. We now have the full “machinery” needed to describe dissipative

quantum transport within the self-consistent field model (discussed in Chapter 3) which treats

each electron as an independent particle moving in an average potential U due to the other

electrons. I should mention, however, that this independent electron model misses what are

referred to as “strong correlation effects”(see Prologue, Section 1.5) which are still poorly

understood. To what extent such effects can be incorporated into this model remains to be

explored (see Appendix, Section A.4).

My purpose in this Chapter is to summarize the machinery we have developed

(Section 11.1) and illustrate how it is applied to concrete problems. I believe these examples

will be useful as a starting point for readers who wish to use it to solve other problems of their

own. At the same time, I have chosen these examples in order to illustrate conceptual issues

that are of great importance in understanding the nature of electrical resistance on an atomic

scale (Section 11.2-11.4).
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11.1. Quantum transport equations

Let me quickly summarize the general model for dissipative quantum transport that we

have discussed.

G G Gn in= +Σ (11.1.1)

G EI H U= − − − −[ ]0
1Σ (11.1.2)

A i G G= − +[ ]   ,   Γ Σ Σ= − +i [ ] (11.1.3)

where Σ Σ Σ Σin in in
s
in= + +1 2

Σ Σ Σ Σ= + +1 2 s (11.1.4)

Fig.I0.1.1a. The generic

transistor structure we

used in the introduction

to motivate this book.
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Fig.11.1.1b. Inflow and outflow of electrons

for the generic structure in Fig.11.1a .
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These equations can be used to calculate the correlation function Gn and hence the density

matrix ρ  whose diagonal elements give us the electron density.

ρ π= ∫ dE G En( ) /2 (11.1.5)

The current (per spin) at any terminal ‘i’ can be calculated from

  

I q dE I Ei i=
−∞

+∞
∫( / ) ˜ ( ) /h 2π (11.1.6)

with ˜ [ ] [ ]I Trace A Trace Gi i
in

i
n= −Σ Γ (11.1.7)

which is depicted in Fig.11.1b in terms of an inflow ( Σ i
inA) and an outflow (Γi

nG ).

Input parameters: To use these equations, we need a channel Hamiltonian [H0] and the

inscattering [ Σin] and broadening [Γ ] functions. For the two contacts, these are related:

Σ Γ1 1 1
in f= and  Σ Γ2 2 2

in f= (11.1.8)

and the broadening / self-energy for each contact can be determined from a knowledge of the

surface spectral function (a) / surface Green’s function (g) of the contact and the matrices

[ τ ] describing the channel contact coupling:

Γ = +τ τa and Σ = +τ τg (11.1.9)

For all the numerical results presented in this chapter we will use the simple one-band

effective mass (equal to the free electron mass) model, both for the channel Hamiltonian

[ H0] and for the contact self-energy functions Σ Σ1 2, .

For the scattering “terminal”, unlike the contacts, there is no simple connection

between Σ s
in and Σs  (or Γs). If the scattering process is essentially elastic (E ≈ E ±   hω),

then (see Eqs.(10.3.13) – (10.3.15))
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Σs
in nE D G E( ) ( )= •0   ,

    Γs E D A E( ) ( )= •0         and Σs E D G E( ) ( )= •0  (11.1.10)

The phonon correlation function D0 is generally a matrix (with the D G0 •  representing an

element by element multiplication) and can be calculated from a knowledge of the phonon

modes and the associated deformation potentials. But in our examples we will simply treat it

as a scalar parameter. For general inelastic scattering processes (see Eqs.(10.3.9), (10.3.12))

  

Σs
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but for our examples we will consider phonons with a single frequency ω0

  Σs
in em n ab nE D G E D G E( ) ( ) ( )= • + + • −0 0 0 0h hω ω

  

Γs
em p n

ab n p

E D G E G E

D G E G E

( ) ( ) ( )

( ) ( )

= • − + +[ ]
+ • − + +[ ]
0 0 0

0 0 0

h h

h h

ω ω

ω ω
(11.1.11)

treating D em
0  and D ab

0  as scalar parameters and ignoring the Hermitian part of Σs(E) which

is given by the Hilbert transform of Γs(E). Note that the inscattering and broadening

functions in Eqs.(11.1.10) and (11.1.11) depend on the correlation functions, unlike the

coherent case. This complicates the solution of the transport equations (Eqs.(11.1.1) –

(11.1.4)), requiring in general an iterative self-consistent solution.

Diffusion equation: If the “phonon spectral function” D0 is just a constant times an

identity matrix, then it follows from Eq.(11.1.10) that Σs
in is a diagonal matrix with

Σs
in nr r E D G r r E( , ; ) ( , ; )= 0
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For long conductors one can neglect the contacts and write Eq.(11.1.1) as

G G Gn
s
in= +Σ , so that the diagonal elements of the correlation function which can be

identified with the electron density, n r E G r r En( ; ) ( , ; ) /= 2π  obey the equation

n r E D G r r E n r E
r

( ; ) ( , '; ) ( '; )
'

= ∑ 0
2

It can be shown that if the Green’s function varies slowly in space then this equation reduces

to the diffusion equation: ∇ =2 0n r E( ; )  [Ref.A.2c].

Transmission: In Chapter 9 we saw that the concept of transmission is a very useful one

and developed an expression for the current in terms of the transmission function (see

Eq.(8.9)). For quantum transport with dissipation, the concept is still useful as a qualitative

heuristic tool, but in general it is not possible to write down a simple quantitative expression

for the current in terms of the transmission function, because there is no simple connection

between Σ s
in and Γs, unlike the contacts where Σ i

in = Γi if . It is more convenient to calculate

the current directly from Eq.(11.1.6) instead. We can define an effective transmission by

comparing Eq.(11.1.6) with Eq.(9.9)

T E
I E

f E f E

Trace A Trace G

f feff
i i

in
i

n

( )
˜ ( )

( ) ( )

[ ] [ ]
=

−
=

−
−1 2 1 2

Σ Γ
(11.1.12)

which can be a useful parameter to compare with coherent transport.

Self-consistent calculation: Finally I would like to note that in general it is necessary to

perform a self-consistent solution of the transport equations with the “Poisson” equation

which accounts for electron-electron interactions through a potential U(  
r
r ) (see Fig.11.1.2).

We write Poisson within quotes as a reminder that this part of the problem could include

corrections for correlation effects (see Chapter 3) in addition to standard electrostatics. This

aspect is commonly ignored (as we do in Sections 11.2, 11.3) when calculating “linear

response” for bias voltages that are small compared to the thermal energy k TB  and/or the

energy scale on which the density of states changes significantly. The current is then

independent of the precise spatial profile U(  
r
r ) arising from the applied drain voltage. But if

we are interested in the shape of the current-voltage (I-V) characteristics over a wide range of
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bias values as we are, for example, when calculating the ON-current of a transistor (Section

11.3), then the potential profile is of crucial importance as explained in the Prologue (see

Section 1.4).

A simple one-level example: In Chapter one, we went through an example with just one level

so that the electron density and current could all be calculated from a rate equation with a

simple model for broadening. I then indicated that in general we need a matrix version of this

“scalar model” and that is what the rest of the book is about (see Fig.1.6.4).

Now that we have the full “matrix model” we have the machinery to do elaborate calculations

as we will illustrate in the following calculations. But before getting into such details, it is

instructive to specialize to a one-level system so that all the matrices reduce to pure numbers

and the results are easily worked out analytically. From Eqs.(11.1.1) – (11.1.4),

Fig.11.1.2. In general, the

transport problem has to be solved

self-consistently with the “Poisson”

equation, which accounts for

electron-electron interactions

through the potential U.

“Poisson” Equation
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G E E i( ) ( ( / ))= − + −ε Γ 2 1

A E
E

( )
( ) ( / )

=
− +

Γ
Γε 2 22

, Γ Γ Γ= + +1 2 0D A

G E E A En in( ) ( ) ( ) /= Σ Γ , Σ Γ Γin nf f D G= + +1 1 2 2 0

Hence,   
G
A

f f D G
D A

n n
= + +

+ +
Γ Γ

Γ Γ
1 1 2 2 0

1 2 0
      so that

G
A

f fn
= +

+
Γ Γ

Γ Γ
1 1 2 2

1 2

independent of the scattering strength D0. From Eqs.(11.1.6) – (11.1.7),

Ĩ D G A D AGs
n n= − =0 0 0

and ˜ ( ( / )) ( ) ˜I A f G A
A

f f In
1 1 1

1 2

1 2
1 2 2= − =

+
− = −Γ Γ Γ

Γ Γ

so that I
q
h

dE
A

f f=
+

−∫ Γ Γ
Γ Γ

1 2

1 2
1 2( )

showing that elastic phase-breaking of this sort in a one-level system has no effect on the

current which is independent of D0 .
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11.2. Physics of Ohm’s law

My objective in this Section is to show how the general quantum transport equations

can be used to model conductors with phase-breaking processes. At the same time these

examples will help illustrate how an ultrashort ballistic conductor evolves into a familiar

macroscopic one obeying Ohm’s law which states that the conductance is directly

proportional to the cross-sectional area, S and inversely to the length, L. In the introductory

chapter itself I noted that for a ballistic conductor it is easy to see why the conductance should

increase with area (S) using elementary arguments. Now that we have discussed the concept

of subbands (see Chapter 6) we can make the argument more precise. The conductance of a

conductor increases with cross-sectional area because the number of subbands available for

conduction increases and for large conductors this number is directly proportional to S.

But why should the conductance decrease with length (L)? Indeed a ballistic

conductor without scattering has a conductance that is independent of its length. But for long

conductors with scattering, the conductance decreases because the average transmission

probability of electrons from the source to the drain decreases with the length of the

conductor. We have seen in Chapter 9 that the conductance is proportional to the total

transmission T  at the Fermi energy (see Eq.(9.2.2)), which can be expressed as the product

of the number of modes, M and the average transmission probability per mode, T:

G q h T q h M T= =( / ) ( / )2 22 2 (Landauer formula) (11.2.1)

For large conductors, M ~ S and T ~ 1 / L, leading to Ohm’s law: G ~ S / L. And that brings

us to the question: Why does the transmission probability decrease inversely with length?

Classical transport:

If we think of the electrons as classical particles, then it is easy to see why the

transmission probability T ~ 1 / L. Consider a conductor consisting of two sections in series

as shown in Fig.11.2.1. The first section has a transmission probability T1 while the second

has a transmission probability of T2. What is the probability T that an electron will transmit

through both? It is tempting to say that the answer is obviously T = T1 T2, but that is wrong.

That is the probability that the electron will get through both sections in its first attempt. But

an electron turned back from section 2 on its first attempt has a probability of T T R R1 2 1 2 of

getting through on after two reflections as shown in the figure (R T1 11= −  and R T2 21= − ).
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Fig.11.2.1. Classical “addition” of the transmission probabilities for two

successive sections to obtain an overall transmission probability.

We can sum up the probabilities for all the paths analytically to obtain

T T T R R R R R R= ( ) + ( ) + ( ) + ⋅ ⋅ ⋅( )1 2 1 2 1 2
2

1 2
3

=
−

=
+ −

T T
R R

T T
T T T T

1 2

1 2

1 2

1 2 1 21

so that
1 1 1

1
1 2T T T

= + − (11.2.2)

This relation tells us the resulting transmission T if we cascade two sections with transmission

T1 and T2 respectively. From this relation we can deduce a general expression for the

transmission, T(L) of a section of length L by asking what function will satisfy the relation

1 1 1
1

1 2 1 2T L L T L T L( ) ( ) ( )+
= + −   ?

It is easy to check that the following function fits the bill

T
L

L
=

+ Λ
(11.2.3)

where Λ is a constant of the order of a mean free path, representing the length for which the

transmission probability is 0.5.

T T1 2

……
T T R R1 2 1 2

2( )
T T R R1 2 1 2

  
T

R
1

11

=
−

 
T

R
2

21

=
−
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Eq.(11.2.3) represents the transmission probability for classical particles as a function

of the length of a conductor. Combining with Eq.(11.2.1) we obtain

G q M h
L

L
=

+
( / )2 2

Λ

so that the resistance can be written as a constant interface resistance in series with a “device”

resistance that increases linearly with length as required by Ohm’s law:

1

2 22 2G
h

q M

h

q M

L= +
Λ

(11.2.4)

             interface resistance     “device” resistance

Eq.(11.2.4) suggests that the device conductance itself should be written as

G
q M
h

T
T

=
−

2
1

2
(11.2.5)

which was the original form advocated by Landauer. Eq.(11.2.5) yields a resistance of zero as

one might expect for a ballistic conductor (with T = 1), while Eq.(11.2.1) yields a non-zero

resistance whose physical meaning caused extensive debate in the 1980’s.

This non-zero resistance is now believed to represent the resistance associated with the

interfaces between a low dimensional conductor with ‘M’ subbands and two large contacts

with a very large number of subbands. In view of the fact that two-terminal measurements

measure the total resistance rather than the “device” resistance, the present trend is to use

Eq.(11.2.1) with the understanding that it includes the interface resistance along with the

device resistance. Four-terminal measurements, on the other hand are typically interpreted on

the basis of the multiterminal Buttiker formula discussed in Chapter 8.

1 2 2/ ( / )G h q M= 1 0/G =
      Eq.(11.2.1)              Eq.(11.2.5)
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Coherent transport (one subband):

We have seen that if we view electrons as classical particles, we do recover

Ohm’s law together with a constant interface resistance in series. But is this true if we

treat electrons as quantum mechanical particles obeying the Schrodinger wave

equation? The answer is no! This is easy to check numerically if we calculate the

transmission through a device with one scatterer (A or B) and a device with two

scatterers (A and B) as shown below.

Fig.11.2.2. (a) A short device with two scatterers, A and B. A discrete lattice with

40 sites separated by a = 3 A was used in the calculation  along with an effective

mass equal to the free electron mass, m. A small bias potential was assumed

varying linearly from +5 meV to –5 meV across the device. Each scatterer is

represented by a potential of 0.5 eV at one lattice site.

(b) Transmission versus energy calculated with one scatterer only (A or B) and

with both scatterers (A and B).

The transmission was calculated using the equations stated at the beginning of Section 11.2.

with the phase-breaking terms ( Σs  and Σ s
in) set equal to zero. Since we are dealing with

coherent transport, we could calculate the transmission directly from Eq.(8.8). But it is better

to use Eq.(11.2.7) since it is applicable to non-coherent transport and can be used in our later

examples as well.
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The important message from the example shown in Fig.11.2.2 is that the quantum

transmission through two scatterers does not follow a simple rule like the one (Eq.(11.2.2))

we obtained for the transmission for classical particles. The basis reason is the interference

between the two scatterers. If they are spaced by half a wavelength the reflections from the

two scatterers interfere constructively, leading to a dip in the transmission. But if they are

spaced by a quarter of a wavelength, the reflections interfere destructively, leading to a peak

in the transmission. This shows up as large oscillations in the transmission as a function of

energy (which determines the de Broglie wavelength of the electrons). Clearly then if we

cascade two sections, we do not expect the composite transmission to have an additive

property as required by Ohm’s law. Indeed depending on the location of the Fermi energy,

the transmission through two scatterers could even exceed that through the individual

scatterers. This could never happen with classical particles which cannot have a higher

probability of getting through two sections than of getting through one. But this is a well-

known phenomenon with waves due to interference effects: light transmits better into a lens

if we put an extra anti-reflection coating on top. Similarly with electrons too one section

could act as an anti-reflection coating for the next section, leading to greater transmission and

hence a lower resistance for two sections than for one!

Coherent transport (multiple subbands):

One could argue that this is really an artifact of a one-dimensional model whereby

electrons of a given energy have a single wavelength.

By contrast, in a multi-moded

conductor, electrons of a given energy

have many different values of ‘k’ and

hence many different wavelengths 9in

the longitudinal direction) , one for

each mode, as shown.

As a result, we can expect interference effects to be diluted by the superposition of many

oscillations with multiple wavelengths. This is indeed true. Fig.11.2.3 shows the

transmission through a two-dimensional wire having a width of 75A and a length of 200A

modeled with a discrete lattice of points spaced by 5A. Without any scatterer, the

transmission at any energy E is equal to the number of propagating modes M(E), which

increases in steps from four to six over the energy range shown. The transmission with one

scatterer (with a transverse profile as shown below)
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increases monotonically with energy and we can deduce a semiclassical transmission for two

scatterers using Eq.(11.2.2) with T = T  / M and noting that T T2 1≈

M
T

M
T

T
T

T M
= − → =

− ( )
2

1
21

1

1 /

It is apparent that the quantum transmission through two scatterers fluctuates around this

semiclassical result, the size of the fluctuation being of order one. Such fluctuations in the

conductance of narrow wires as a function of the gate voltage (which shifts the Fermi energy

relative to the levels) have been observed experimentally and are often referred to as universal

conductance fluctuations. Fluctuations have also been observed as a function of the magnetic

field which changes the effective wavelength at a given energy.

75 A

Fig.11.2.3. Transmission

versus energy calculated for

a wire with multiple

subbands having no

scatterer, one scatterer and

two scatterers respectively.

Each scatterer has a

maximum potential of 0.25

eV at the center of the wire.
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Since the size of the fluctuation is of order one, the reader might wonder what happens if the

transmission falls below one. This will happen if the transmission probability T per mode M

is smaller than 1/M, so that the total transmission T  = MT is less than one. In Fig.11.2.4 we

show the calculated transmission as the strength of the scatterers is increased from a

maximum scattering potential of 0.25 eV to 5 eV. It is apparent that in the latter case the

conductance shows large peaks separated by ranges of energy where the transmission

becomes negligible indicating a strong localization of the electronic wavefunctions.

By contrast, with weaker scattering potentials when the semiclassical transmission is larger

than one, the quantum transmission shows fluctuations of order one around the semiclassical

result. With multiple scatterers, the average quantum transmission turns out to be

approximately one less than the semiclassical result. This is not at all evident from Fig.11.2.4

which only involves two scatterers. With a large number of independent scatterers, it turns out

that the backscattering per mode is enhanced by (1/M) due to constructive interference leading

to an equal decrease in the transmission per mode and hence to a decrease of one in the total

transmission. A magnetic field destroys the constructive interference, causing an increase in

the transmission which has been experimentally observed as a negative magnetoresistance

(reduction in the resistance in a magnetic field) and is ascribed to this so-called weak

localization effect. The basic phenomenon involving a coherent increase in backscattering has

also been observed with electromagnetic waves in a number of different contexts unrelated to

electron transport.

Fig.11.2.4. Transmission

versus energy calculated

for a wire with multiple

subbands having two

scatterers  with a maximum

potential of 5 eV, 0.5 eV

and 0.25 eV respectively.

The dashed lines show the

semiclassical result for two

scatterers deduced from

the transmission through
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Quantum transport with dephasing

To summarize, as we make a wire longer the semiclassical transmission will

decrease in accordance with Ohm’s law and the quantum transmission will exhibit

fluctuations of the order of one around the semiclassical result. If we make any wire

long enough, there will come a length for which the semiclassical transmission will be

less than one (see Eq.(11.2.3)):

T
M

L
≈

+
<Λ

Λ
1 if L M> Λ

The quantum transmission for a wire longer than the localization length ( ~ MΛ ) will

show large fluctuations characteristic of the strong localization regime. It would seem

that even a copper wire if it is long enough will eventually enter this regime and cease

to obey anything resembling Ohm’s law! However, that is not what happens in real

life. Why?

The reason is that our observations are valid for phase-coherent conductors

where we do not have significant phase-breaking processes to dilute the quantum

interference effects. A wire will exhibit strong localization only if the localization

length MΛ  is shorter than the phase-breaking length. Since this length is typically
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quite short especially at room temperature, there is little chance of a copper wire (with

its enormous number of modes, M) ever entering this regime. Fig.11.2.5 shows the

effective transmission for a one-dimensional wire having two coherent scatterers, with

and without phase-breaking scattering.  It is apparent that the interference effects are

effectively washed out by the presence of phase-breaking processes. Fig.11.2.6 shows

that a one-dimensional wire with only phase-breaking scatterers leads to Ohm’s law

like behavior as a function of length. Of course in this limit a full quantum transport

model is unnecessary. We could probably use a semiclassical model that neglects

interference effects altogether and treats electrons as particles [11.2]. However, in

general, we have both coherent and phase-breaking scattering and the quantum

transport model described in Section 11.1 allows us to include both.

In these calculations we have assumed that the phase-breaking scatterers carry negligible

energy away (  hω ! 0), so that we can use the simplified versions (cf. Eqs.(11.10))

Σ s
in nE D G E( ) [ ( )]= 0    and Σs E D G E( ) [ ( )]= 0 (11.2.6)

to evaluate the self-energy and inscattering functions. We are also assuming the scattering to

be diagonal in real space and uniformly distributed so that D0 is a constant that we have set

equal to 0.01 eV2 in Fig.11.2.5 and to 0.05 eV2 in Fig.11.2.6.

Fig.11.2.6. Normalized

resistance (inverse

transmission) as a

function of length for a

one dimensional wire

with phase-breaking

scattering only.
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11.3. Where is the heat dissipated?

We have seen that with adequate amounts of phase-breaking scattering, the

resistance of a conductor increases linearly with length (Fig.11.2.6) in accordance

with Ohm’s law. However, as the length tends to zero (ballistic conductor), the

resistance tends to a constant representing the interface resistance associated with the

interfaces between the low-dimensional conductor and the three-dimensional contacts.

But where does the associated I R2  loss (or the Joule heating) occur?

The answer to this question depends on the nature of the scattering process.

The point is that resistance comes from the loss of momentum associated with

scattering while the associated Joule heating comes from the loss of energy. For

example, in Figs.11.2.5 and 11.2.6 we have modeled the phase-breaking scattering as

an elastic process, neglecting any associated energy loss. This means that in this

model, no energy is dissipated inside the device at all. Nonetheless this elastic

scattering does give rise to a resistance that obeys Ohm’s law because of the

associated loss of momentum, not the loss of phase. Indeed in small conductors, a

significant fraction of the Joule heat I2R associated with a resistor R could be

dissipated in the contacts rather than in the conductor itself. There is concrete evidence

that this is true, allowing experimentalists to pump far more current through small

conductors than what would be needed to destroy them if all the heat were dissipated

inside them.

The fact that elastic scattering is not associated with any energy loss can be

seen by noting at the normalized current per unit energy Ĩi(E) (see Eq.(11.1.6)) is

identical at each of the two terminals (source and drain) as shown in Fig.11.3.1.

Fig.11.3.1. Normalized

current per unit energy,

Ĩi (E) in a  one-

dimensional wire with

phase-breaking elastic

scattering.
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The point is that the energy current at any terminal is given by (cf. Eq.(11.1.6))

  

I dE E I EE i i,
˜ ( ) /=

−∞

+∞
∫ 2πh (11.3.1)

and if there is power (Pd) dissipated inside the device then it must be reflected as a

difference in the energy currents at the source and drain terminals:

P I Id E drain E source= −, , (11.3.2)

Since current conservation requires the current to be the same at the source and the

drain, the energy currents can be different only if they are distributed differently as a

function of energy. Clearly there is no power dissipated in the device shown in

Fig.11.3.1, since the current has the same energy distribution at the source and drain.

But if we model the same device assuming that the scatterers have an associated

phonon energy of   hω = 20 meV, the energy distribution of the current is different at

the source and drain, showing that some fraction of the I R2  loss occurs inside the

device. Electrons enter the source at a higher energy on the average than the energy at

which they exit the drain.

Fig.11.3.2. Normalized

current per unit energy, Ĩi

(E) in a one-dimensional wire

with inelastic scattering by

phonons with energy   hω =

20 meV ( D0 = 0.1 eV2). The

drain current flows at a lower

energy than the source

current due to the energy

relaxation inside the device. -0.2 -0.1 0 0.1 0.2-0.05
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“Peltier” effect:

It is interesting to note that power need not be dissipated everywhere. In an

inhomogeneous device there could be local regions where energy is absorbed by the

electrons and the solid is locally cooled. Consider, for example, a one-dimensional

current with a potential step in the center that forces the current to flow at a higher

energy at the drain terminal than at the source terminal (Fig.11.3.2). It is easy to see

that the junction is cooled by the flow of current, which can be considered a

microscopic version of the well-known Peltier effect where an electrical current cools

one junction at the expense of another. Indeed if we had a potential barrier with an

upstep followed by a downstep then the upstep would be cooled while the downstep

would be heated. This aspect of the energy exchange is reversible and is proportional

to the current, unlike the irreversible Joule heating which is proportional to the square

of the current.

Fig.11.3.3. Normalized current per unit energy, Ĩi (E) in a one-

dimensional wire with inelastic scattering by phonons with energy   hω =

20 meV ( D0 = 0.1 eV2), having a potential step in the middle as shown.

The drain current flows at a higher energy than the source current

indicating that the device is cooled by the flow of current.
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11.4. Where is the voltage drop?

In Section 11.1, I stressed the importance of doing quantum transport

calculations self-consistently with the “Poisson” equation (see Fig.11.1.2) for the

self-consistent potential U representing the effect of the other electrons. This is

particularly important when calculating the current under a “large” applied voltage:

the shape of the current-voltage characteristics can sometimes be significantly

different depending on the potential profile (or the “voltage drop”) inside the

channel. For example, in determining the maximum (or the ON) current of a

transistor it is important to know where the voltage drops.

Fig.11.4.1. A nanotransistor consisting of a quantum wire channel

surrounded by a coaxial gate which is used to induce electrons in the

channel.

Consider a “nanotransistor” composed of a narrow quantum wire labeled

the “channel” (see Fig.11.4.1) of radius ‘a’ surrounded by a coaxial gate of radius

‘b’ which is used to induce electrons in the channel as we discussed in Chapter 7.

Assume that the electrons in the channel belong to a single subband with a parabolic

dispersion relation

  E E k mc= + ( / )h2 2 2 (11.4.1)
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CHANNEL µ2
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At equilibrium, with µ2 = µ1 and low temperatures (T ! 0 K) the density of

electrons (per unit length) in the channel can be written as (see Table  5.2.1 with an

extra factor of two to account for two spins)

  n m EL c= −2 2 1( ) /µ πh (11.4.2)

If we make the gate voltage VG  more positive, it will induce more electrons in the

channel, while if we make it more negative it will deplete the channel of electrons, in

much the same way that we discussed in Section 7.3, except that in Chapter 7 we

were talking primarily about a flat two-dimensional conductor, while now we are

talking about a cylindrical one-dimensional conductor. In Chapter 6 we discussed

only the equilibrium problem with µ2 = µ1. The problem I wish to discuss now is a

non-equilibrium one. A voltage VD is applied to the drain relative to the source

making µ2 = µ1 - q VD. What is the current, I? Formally we can calculate by

following the self-consistent procedure depicted in Fig.11.1.2 and numerical results

are shown in Fig.11.4.3. But first let us try to understand the physics in simple

terms.

Ballistic nanotransistor: We will start with a ballistic transistor (no scattering)

having perfect contacts. If the contacts are good and there is no scattering we would

expect the low bias conductance to be equal to the conductance quantum times two

(for spin).

I    =  (2 2q h/ ) VD (11.4.3a)

The +k states are filled up from the left contact with an electrochemical potential µ1

while the – k states are filled from the right contact with an electrochemical potential

µ2. In the energy range between µ1 and µ2 (plus a few k TB  on either side) the +k

states are nearly filled and carry current, but this current is not balanced by the –k

states since they are nearly empty. Since a 1-D wire carries a current of (2q/h) per

unit energy, there is a net current given by (2q/h) times the energy range (µ1-µ2)

which is equal to (2 2q h/ ) VD as stated above.
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Fig.11.4.2. An applied voltage lowers the energy levels and the

electrochemical potential in the drain region. The +k states are occupied

from the source upto µ1 while the –k states are occupied from the drain

upto µ2 causing a net current to flow as discussed in

Chapter 6 (see Section 6.3).

Fig.11.4.3. Same as Fig.11.4.2 except that the equilibrium conduction

band profile has been subtracted off. This plot shows just the change U in

the potential under an applied bias. Inside the channel, the two extreme

possibilities are the Laplace potential UL and the neutral potential UN as

explained in the text.

Once µ2 has dropped below the bottom of the band ( Ec), the current cannot

increase any further and we expect the ON-current to be given by

ION
L( )     =  ( 2 2q h/ ) (µ1 − Ec) (11.4.3b)
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Eqs.(11.4.3a, b) suggest that the current should increase linearly with voltage and

then level off as the voltage approaches (µ1 − Ec). It is indeed true that the current

increases linearly and then saturates, but depending on the electrostatics, the ON-

current could be much larger, upto four times as large as that given by Eq.(11.4.3b),

which we have labeled with an ‘L’ to denote the Laplace limit. Let me explain what I

mean by that and what the other limit is.

The result given in Eq.(11.4.3b) is based on the picture shown in Fig.11.4.2

which assumes that the only effect of the increasing drain voltage is to lower µ2,

while the energy levels in the channel remain fixed relative to the source. However,

depending on the electrostatics, it is possible that the potential energy U in the

channel would drop by some fraction of the drain potential − qVD thus lowering the

bottom of the band and increasing the ON-current to (note that U is a negative

quantity for positive drain voltages)

ION    =  ( 2 2q h/ ) (µ1 − Ec-U) (11.4.4)

(I am assuming that U remains less than ∆ , see Fig.11.4.2). So in estimating the

ON-current, the all important question is “How does the voltage drop?” The source

is at zero, the drain is at – qVD: What is the potential energy U inside the channel?

In general we determine the channel potential from a self-consistent solution

of  the electrostatics and the transport problems. For our present problem we can

write the electrostatics in the form

U U q C nL E L= + ( / )2 δ (11.4.5)

where CE is the capacitance per unit length of a coaxial capacitor with inner and

outer radii equal to ‘a’ and ‘b’ respectively.

C b aE r= 2 0πε ε / ln( / ) (11.4.6)

δnLis the change in the electron density per unit length. and UL is the solution to

corresponding to δnL= 0, sometimes called the Laplace solution which is shown in

Fig.11.4.3. Since the potential is applied only to the drain and not the gate the

Laplace potential has the shape shown in Fig.11.4.3. It is essentially equal to the
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source potential throughout the channel and rapidly changes to the drain potential at

the other end; how rapidly depends on the closeness of the gate to the channel.

The actual potential inside the channel is close to the Laplace limit if the  electrostatic

capacitance CE is large: the second term in Eq.(11.4.5) then is negligible. This is the

case when we assume a very “high-K” dielectric with εr  = 100 (see Eq.(11.4.6)

with b set equal to ‘2a’). But when we use a smaller εr  = 2, the current increases

significantly.by nearly a factor of two.

If the capacitance is even smaller, then in principle we could be in the other

limit where δnL! 0, but the second term is finite. We call this the neutral limit and

the corresponding potential the neutral potential UN (see Section 7.3). What is UN?

We can write the electron density in the ON-state as

  
n m E UL ON c[ ] = − −2 1( ) /µ πh ) (11.4.7)

since the potential energy U (which is negative) moves the bottom of the band down

to Ec + U, but we lose a factor of two because only half the states (having +k) are

occupied. Subtracting Eq.(11.4.7) from (11.4.2) we write the change in the electron

density as
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  δ π µ µn m E E UL c c= − − − −( / ) (2 2 1 1h ) (11.4.8)

Setting δnL= 0, we obtain the neutral potential:

2 1 1µ µ− = − −E E Uc c N

! µ µ1 14− − = −E U Ec N c( ) (11.4.9)

which means that in the neutral limit the ON-current from Eq.(11.4.4) is four times

what we expect in the Laplace limit (cf. Eq.(11.4.3b))

ION
N( )    =  ( 2 2q h/ ) (µ1 − −E Uc N) = 4 ION

L( )        (11.4.10)

I should note that the neutral limit of the ON-current need not always be four

times the Laplace limit. The factor of four is specific to the one-dimensional example

considered here arising from the fact that the electron density is proportional to the

square root of the energy (see Eq.(11.4.1)). For a two-dimensional sheet conductor,

the electron density increase lenearly with energy and we can show that the neutral

limit is two times the Laplace limit. The important point is that there is a Laplace limit

and a neutral limit and the actual value could lie anywhere in between depending on

the capacitance CE.

Electrostatic boundary conditions: In Fig.11.4.3 we have shown the potential U

approaching the asymptotic values of zero and - q VD set by the external voltage in

the source and drain regions respectively. It is common to assume that this statement

will be true if we make these regions long enough. However, it is important to note

that if the end regions are assumed ballistic then the potential may not reach the

asymptotic values, no matter how long we make these regions.
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Fig.11.4.5. Sketch of the spatial profile of the neutral potential: In the

end regions it does not approach the correct asymptotic values of zero

and -q VD  because a fraction of the density of states in these regions is

“controlled” by the contact at the other end.

The reason is that in these conductive end regions the potential U will

approach the neutral value UN needed to make δnL = 0. Consider the region near

the source, for example. If the potential U were zero, δnLwould be negative because

a fraction of the density of states in this region is now occupied according to the

electrochemical potential µ2 in the drain. This fraction is described by the partial

spectral function [ A2] that we discussed in Chapter 9. To keep δnL= 0, the neutral

potential in this region takes on a negative value (Fig.11.4.5). This situation will not

change if we simply make the end regions longer. As long as they are ballistic, it can

be shown that there will be no change in the fraction of the density of states at one

end that is controlled by the contact at the other end. Consequently the neutral

potential in the source region will be less than the asymptotic value of zero and using

a similar argument we can show that in the drain region it will be more than the

asymptotic value of -qVD.

The potential U will revert to the correct asymptotic values ± qV /2 only if a

negligible fraction of the density of states (or spectral function) at one end is

controlled by the contact at the other end. This can happen if there is enough

scattering within the device or if there is strong geometrical dilution at the contacts

(M >> N).
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This means that in modeling near ballistic devices without significant geometric

dilution at the contacts we should not fix  the potential at the two ends to the usual

asymptotic values as we did in solving the capacitance problem (see Eq.(7.2.18)).

One solution is to use a zero-field boundary condition for the Poisson equation and

let the potential U develop self-consistently.

From a conceptual point of view, we could view the spatial profile of the

neutral potential UN (which may be different from the profile of the actual potential

U) as an indicator of the spatial distribution of the resistance. The neutral potential

across any ballistic region remains flat indicating zero resistance as we might

intuitively expect. Fig.11.4.5 shows that only a fraction of the applied voltage VD

actually appears between the two ends of the device indicating that the resistance we

calculate is only partly due to the channel and the rest should be associated with the

interface between the narrow channel regions and the wide contact regions.

Nanotransistor with scattering: We expect the ON-current to be reduced by the

presence of scattering, since the transmission is now less than one by a factor (see

Eq.(11.2.3))

T L L= +/( )Λ (11.4.11)

that depends on the length of the channel relative to a mean free path. In practice,

however, the ON-current is higher that what Eq.(11.4.10) suggests, if the scattering

processes are inelastic rather than elastic.

  ‘M’ modes   ‘M’
modes

‘N’ modes
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Fig.11.4.5. Once an electron has lost sufficient energy through inelastic

processes (point B) it cannot be turned back towards the source and

current is not reduced by further scattering. But if it has not lost enough

energy (point A) then backscattering to the source can occur.

To understand why, we note that inelastic processes cause the electrons

coming in from the source to lose energy as they propagate towards the drain (se

Fig.11.4.5). Once they have lost sufficient energy (indicated by point B) they cannot

easily be turned back towards the source any more, since there are no allowed states

in the source at this lower energy. Consequently, the electron proceeds to the drain

and the current is not reduced. But if the scattering processes are elastic then

electrons do not relax in energy (indicated by point A) and can be turned back

towards the source with a reduction in the current. This physics can be described

approximately by replacing the device length L in Eq.(11.4.10) with the energy

relaxation length Li that an electron traverses before it loses a few k TB  of energy

(large enough that coming back is near impossible)

T L Li i= +/( )Λ (11.4.11)

This can make the actual ON current much larger than what one might expect

otherwise. Even purely elastic scattering causes a similar increase in the ON current

in two-dimensional conductors since it relaxes the longitudinal (directed from the

source to the drain) kinetic energy, although the total energy (longitudinal +

transverse) remains the same. Indeed, commercial transistors for many years now

Bottom of
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have shown ON currents that are within 50% of their ballistic value even though they

may be over ten mean free paths in length. The reason is that the energy relaxation

length Li tends to be of the same order as the mean free path Λ, making the

transmission probability approximately 0.5 regardless of the actual length of the

channel.

My reason for bringing up this issue here is that this is another example of

the importance of the self-consistent potential profile in determining the current at

large bias voltages. For example, the effect just described would not arise if the

potential profile looked like

since there would then be little room for energy relaxation. It seems reasonable to

expect that the actual magnitude of the effect in a real device will depend on the

potential profile that has to be calculated self-consistently as indicated in Fig.11.1.2.

This is a point that is often overlooked because the transport block in Fig.11.1.2 is

intellectually more demanding than the “Poisson” block and tends to overshadow it

in our mind. So it is worth remembering that in many problems, like the ON current

of a nanotransistor, the Poisson block could well represent the key “physics”

making the transport block just a “detail”!

Source
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Exercises

E.11.1. (a) Consider a short 1-D channel with two scatterers, A and B modeled with

a discrete lattice of 40 sites separated by a = 3 A. Assume a small bias potential

varying linearly from +5 meV to –5 meV across the device. Each scatterer is

represented by a potential of 0.5 eV at one lattice site. Calculate the transmission

versus energy with one scatterer only (A or B) and with both scatterers (A and B)

and compare with Fig.11.2.2.

(b) Repeat including elastic phase-breaking scattering processes as indicated in

Eq.(11.2.6) and compare with Fig.11.2.5.

(c) Plot the inverse transmission (at a fixed energy of 0.1 eV) versus length for a 1-D

wire with elastic phase-breaking scattering only and compare with Fig.11.2.6.

E.11.2. (a) Consider a multimoded channel 75A wide and calculate the transmission

through one scatterer and through two scatterers assuming each scatterer to be

represented by a triangular potential (with a maximum of 0.25 eV at the center) in the

transverse direction localized at one lattice plane in the longitudinal direction. Also,

plot the semiclassical result obtained for two scatterers using the result for one

scatterer. Compare with Fig.11.2.3.

(b) Repeat for different strengths of the scattering potential and compare with

Fig.11.2.4.

E.11.3. (a) Consider a 1-D channel with phase-breaking elastic scattering and plot

the current per unit energy as shown in Fig.11.3.1.

(b) Repeat for a channel with inelastic scattering and compare with Fig.11.3.2.

(c) Repeat for a channel with a potential step in the middle with inelastic scattering

and compare with Fig.11.3.3.

E.11.4. Calculate the current (I) versus drain voltage ( VD) self-consistently for the

ballistic quantum wire nanotransistor (Fig.11.3.1) and compare with Fig.11.4.4.

E.11.5. Tunneling in the presence of phase-breaking: Calculate the inverse

transmission at low drain voltage at E = µ for a conductor having its equilibrium

electrochemical potential µ located at 0.1 eV, with the conduction band edge in the

contact at 0 eV and that in the channel at 0.5 eV as shown in the figure below:
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Transmission through the channel is by tunneling, so that the inverse transmission

varies exponentially with the length ‘L’ of the barrier in the absence of phase-

breaking processes. Plot the logarithm of the inverse transmission (normalized

resistance) as a function of the length for 1 nm < L < 7 nm with two different

scattering strengths, D eV0
22=  and 3 2eV  respectively.

You should obtain a

plot like this

Note that the expected exponential dependence of the resistance (linear dependence

of the logarithm of the resistance) does not hold at higher scattering strengths. See

for example, G. Neofotistos, R. Lake and S. Datta, "Inelastic Scattering Effects on

Single Barrier Tunneling," Phys. Rev. B 43, Rapid Communications, 2242-2445

(1991).

µ = 0.1 eV

E = 0 eV

E = 0.5 eV

Fig. E.11.5
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