
Chapter 9 /  Coherent transport

datta@ecn.purdue.edu All rights reserved

2 7 7
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(The reader may wish to review Section 1.6 before reading this chapter)

9.1. Overview

Since this Chapter is rather long, let me start with a detailed overview, that can also

serve as a “summary”. In Chapter one, I described a very simple model for current flow,

namely a single level ε which communicates with two contacts, labeled the source and the

drain. The strength of the coupling to the source (or the drain) was characterized by the rate

  γ1 /h  (or   γ2 /h) at which an electron initially occupying the level would escape into the

source (or the drain).

I pointed out that the flow of current is due to the difference in “agenda” between the source

and the drain, each of which is in a state of local equilibrium, but are maintained at two

different electrochemical potentials and hence with two distinct Fermi functions
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by the applied bias V :  µ µ2 1− = − qV. The source would like the number of electrons

occupying the level to be equal to f1( )ε  while the drain would like to see this number be f2( )ε .

The actual steady state number of electrons, N lies somewhere in-between and the source

keeps pumping in electrons while the drain keeps pulling them out, each hoping to establish

equilibrium with itself. In the process, a current flows in the external circuit.

My purpose in this Chapter is essentially to carry out a generalized version of this treatment

applicable to an arbitrary multi-level device (Fig.9.1.2) whose energy levels and coupling are

described by matrices rather than ordinary numbers:

 ε → [ ]H Hamiltonian matrix

γ1 2 1 2, ,→ [ ]Γ           Broadening matrices,  Γ Σ Σ1 2 1 2 1 2, , ,= −[ ]+i

In Chapter 8 we have seen that connecting a device to a reservoir broadens its energy levels

and it is convenient to talk in terms of a continuous independent energy variable E, rather

than a discrete set of eigenstates. The density matrix can be written in the form (see

Eq.(8.2.13))

Fig.9.1.2. Inflow and outflow for an arbitrary multi-level device whose

energy levels are described by a Hamiltonian matrix [H] and whose coupling

to the source and drain contacts is described by self-energy matrices

Σ1( )E[ ]  and Σ2( )E[ ] respectively.

Trace GnΓ1 2[ ] / π Trace GnΓ2 2[ ] / π
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ρ π[ ] =
−∞

+∞
∫ ( / ) [ ( )]dE G En2 (91.2a)

where in equilibrium [ ( )] [ ( )] ( )G E A E f En
eq = −0 µ (9.1.2b)

Just as the spectral function [A] represents the matrix version of the density of states per unit

energy, the correlation function [ Gn] is the matrix version of the electron density per unit

energy.

Non-equilibrium density matrix: In Section 9.1 the first result we will prove is that when

the device is connected to two contacts with two distinct Fermi functions f1(E) and f2(E), the

density matrix is given by Eq.(9.1.1) with (dropping the argument ‘E’ for clarity)

[ ] [ ] [ ]G A f A fn = +1 1 2 2 (9.1.3)

where A G G1 1= +Γ and A G G2 2= +Γ (9.1.4)

G EI H= − − −[ ] −Σ Σ1 2
1 (9.1.5)

suggesting that a fraction [ A1] of the spectral function remains in equilibrium with the

source Fermi function f1 while another fraction [ A2] remains in equilibrium with the drain

Fermi function f2. We will show that these two partial spectral functions indeed add up to

give the total spectral function [A] that we discussed in Chapter 8 (see Eq.(8.2.7))

[ ] [ ] [ ] [ ]A i G G A A≡ − = ++
1 2 (9.1.6)

Current: Next we will show that the current Ii at terminal ‘i’  can be written in the form

I q h dE I Ei i= −
−∞

+∞
∫( / ) ˜ ( )

with ˜ [ ] [ ]I Trace A f Trace Gi i i
n= −Γ Γ1 (9.1.7)

representing a dimensionless current per unit energy. This leads to the picture shown in

Fig.9.1.2 which can be viewed as the quantum version of our elementary picture from Chapter

one (Fig.9.1.1).
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One-level model: In Chapter one, we went through an example with just one level so that the

electron density and current could all be calculated from a rate equation with a simple model

for broadening. I then indicated that in general we need a matrix version of this “scalar

model” and that is what the rest of the book is about (see Fig.1.6.5).

It is instructive to check that the full “matrix model” we have stated above (and will

derive in this Chapter) reduces to our old results (Eqs.(1.6.4) – (1.6.6)) when we specialize to

a one-level system so that all the matrices reduce to pure numbers.

From Eq.(9.1.5), G E E i( ) ( ( / ))= − + −ε Γ 2 1

From Eq.(9.1.4), A E
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which can be compared with Eq.(1.6.4). Similarly, from Eqs.(9.7) the current at the two

terminals are given by (cf. Eqs.(1.6.5a,b)):

I
q
h

dE A E f E G En
1 1 1= ( ) −[ ]

− ∞

+ ∞
∫ Γ ( ) ( )

I
q
h

dE A E f E G En
2 2 2= ( ) − ( )[ ]

− ∞

+ ∞
∫ Γ ( )

Transmission: Eq.(9.7) can be combined with (9.3) and (9.6) to write

I I T E f E f E1 2 1 2= − = −( ) ( ( ) ( ))

where T E Trace A Trace A( ) ≡ [ ] = [ ]Γ Γ1 2 2 1 (9.1.8)

The current I in the external circuit is given by

I q h dE T E f E f E= −
− ∞

+ ∞
∫( / ) ( ) ( ( ) ( ))1 2 (9.1.9)
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The quantity T E( )  appearing in the current equation (Eq.(9.1.9)) is called the transmission

function which tells us the rate at which electrons transmit from the source to the drain

contacts by propagating through the device. Knowing the device Hamiltonian [H] and its

coupling to the contacts described by the self-energy matrices Σ1 2, , we can calculate the

current either from Eq.(9.1.7) or from Eq.(9.1.9). This procedure can be used to analyze any

device as long as the evolution of electrons through the device is coherent. Let me explain

what that means.

The propagation of electrons is said to be coherent, if it does not suffer phase-

breaking scattering processes that cause a change in the state of an external object. For

example, if the electron got deflected from a rigid (that is unchangeable) defect in the lattice,

the propagation would still be considered coherent. The effect could be incorporated through

an appropriate defect potential in the Hamiltonian [H] and we could still calculate the current

from Fig.9.1.2. But, if the electron transferred some energy to the atomic lattice causing it to

start vibrating that would constitute a phase-breaking process and the effect cannot be

included in [H]. How it can be included is the subject of Chapter 10.

Fig. 9.1.3. The transmission formalism assumes the device to be connected via

ideal multimoded quantum wires to the contacts and the transmission function is

related to the S-matrix between these leads.

I should mention here that coherent transport is commonly treated using the transmission

formalism which starts with the assumption that the device is connected to the contacts by

two ideal leads which can be viewed as multimoded quantum wires so that one can calculate

an S-matrix for the device (Fig.9.1.3), somewhat like a microwave waveguide. The

transmission matrix s21 (or s12) is of size M x N (or N x M) if lead 1 has N modes and

lead 2 has M modes and the transmission function is obtained from its trace: T (E) = Trace

[ s s12 12
+ ] = Trace [ s s21 21

+ ]. This approach is widely used and seems quite appealing

especially to those familiar with the concept of S-matrices in microwave waveguides.
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Transmission from Green’s function: For coherent transport, one can calculate the

transmission from the Green’s functions method, using the relation

T E Trace G G Trace G G( ) ≡ [ ] = [ ]+ +Γ Γ Γ Γ1 2 2 1 (9.1.10)

obtained by combining Eq.(9.1.8) with (9.1.4). In Sections 9.2, 9.3 we will derive all the

equations (Eq.(9.1.2)-(9.1.7)) stated in this Section. But for the moment let me just try to

justify the expression for the transmission (Eq.(9.1.10)) using a simple example. Consider

now a simple 1-D wire modeled with a discrete lattice (Fig.9.1.4). We wish to calculate the

transmission coefficient

T E v v t( ) ( / )= 2 1
2 (9.1.11)

where the ratio of velocities ( v2/ v1 ) is included because the transmission is equal to the

ratio of the transmitted to the incident current, and the current is proportional to the velocity

times the probability ψ 2.

To calculate the transmission from the Green’s function approach, we start from the

Schrodinger equation, [ ] { }EI H− { } =ψ 0 ,  describing the entire infinite system and use the

same approach described in Section 8.1 to eliminate the semi-infinite leads

[ ] { }EI H S− − − { } =Σ Σ1 2 ψ ! { } [ ] { }ψ = G S (9.1.12)

where [G] is given by Eq.(9.1.6). Σ1 and Σ2 are matrices that represent the effects of the

two leads:  each has only one non-zero element (see Eq.(8.1.7a)):

Σ1 0 111( , ) exp( )= − t ik a , Σ2 0 2( , ) exp( )N N t ik a= −

corresponding to the end point of the channel (1 or N) where the lead is connected. The

source term {S} is a column vector with just one non-zero element corresponding to the end

point (1) on which the electron wave is incident (see Eq.(8.1.7b)):

  S i t k a i v a( ) sin ( / )1 2 0 1 1= = h
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From Eq.(9.1.12) we can write t N G N S= =ψ( ) ( , ) ( )1 1  so that from Eq.(9.1.11)

  T E v a v a G N( ) ( / )( / ) ( , )= h h1 2
21

which is exactly what we get from the general expression in Eq.(9.1.10).

This simple example is designed to illustrate the relation between the Green’s

function and transmission points of view. I believe the advantages of the Green’s function

formulation are threefold:

(1) The generality of the derivation shows that the basic results apply to arbitrary shaped

channels described by [H] with arbitrary shaped contacts described by [ Σ1], [ Σ2] .

This partitioning of the channels from the contacts is very useful when dealing with

more complicated structures.

(2) The Green’s function approach allows us to calculate the density matrix (hence the

electron density) as well. This can be done within the transmission formalism, but

less straightforwardly [Ref.9.3].

(3) The Green’s function approach can handle incoherent transport with phase-breaking

scattering, as we will see in Chapter 10. Phase-breaking processes can only be

included phenomenologically within the transmission formalism [Ref.9.2].

In Sections 9.2, 9.3 we will derive the Green’s function equations stated earlier (Eqs.(9.1.2)-

(9.1.7)), discuss the relation with the transmission formalism in Section 9.4 and finally

present a few illustrative examples in Section 9.5.

Fig .9 .1 .4
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9.2. Density matrix

In this Section we will derive the results stated in Section 9.1 for the non-equilibrium

density matrix (Eqs.(9.1.3)-(9.1.6)) for a channel connected to two contacts. In the next

Section we will derive the current expressions (Eqs.(9.1.7)-(9.1.9)).

Channel with one contact: I would like to start by re-visiting the problem of a channel

connected to one contact and clearing up a conceptual issue, before we take on the real

problem with two contacts. In Section 8.1 we started from a Schrodinger equation for the

composite contact-channel system

and showed that the scattered waves ψ{ } and

χ{ } can be viewed as arising from the

“spilling over” of the wavefunction ΦR{ } in

the isolated contact. Using straightforward

matrix algebra we obtained

χ τ ψ{ } = { }+GR (9.2.2)

where G EI H iR R R≡ − +[ ] −η 1 (9.2.3)

ψ{ } = { }[ ]G S (9.2.4)

G EI H≡ − −[ ] −Σ 1 (9.2.5)

Σ ≡ +τ τGR (9.2.6)

{S} = τ ΦR{ } (9.2.7)

Since there is only one contact this is really an equilibrium problem and the density matrix is

obtained simply by filling up the spectral function

A E i G G( ) = −[ ]+ (9.2.8)

according to the Fermi function as stated in Eqs.(9.1.1), (9.1.2). What I would like to do now

is to obtain this result in a completely different way. I will assume that the source waves

ΦR{ } from the contact are filled according to the Fermi function and the channel itself is

E
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filled simply by the spilling over of these wavefunctions. I will show that the resulting density

matrix in the channel is identical to what we obtained earlier. Once we are clear about the

approach we will extend it to the real problem with two contacts.

Before we connect the contact to the device, the electrons will occupy the contact

eigenstates α  according to its Fermi function, so that we can write down the density matrix

for the contact as

  

ρ φ ε µ φα
α

α αR r r r f r
r r r r
, ' ( ) ( ')*( ) = −( )∑ 0

or in matrix notation as ρ ε µ φ φα α
α

αR f[ ] = −( ) { } { }∑ +
0 (9.2.9)

Now we wish to calculate the device density matrix by calculating the response of the device

to the excitation τ Φ{ } from the contact. We can write the source term due to each contact

eigenstate α , Sα ατ φ{ } = { }
find the resulting device wavefunction from Eq.(9.2.8) ψ τ φα α{ } = { }G

and then obtain the device density matrix by adding up the individual components weighted

by the appropriate Fermi factors for the original contact eigensate  α:

ρ ε µ ψ ψα α
α

α[ ] = −( ) { } { }∑ +f0

= −( ) −( ) { } { }∫ ∑ +dE f E E0 µ δ ε ψ ψα α
α

α

= −( ) −( ) { } { }










∫ ∑ + + +dE f E G E G0 µ τ δ ε φ φ τα α

α
α

= −( )∫ + +dE
f E G A GR2 0π

µ τ τ (9.2.10)

making use of the expression for the spectral function in the contact (Eq.(8.2.3):

A E ER( ) = −( ) { } { }∑ +δ ε φ φα α
α

α (9.2.11)

From Eq.(9.2.6), Γ Σ Σ= − =+ +i AR[ ] τ τ (9.2.12)

so that from Eq.(9.2.10) we can write
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[ ] [ ] ( )G G G f En = −+Γ 0 µ (9.2.13)

where we have made use of Eq.(9.2.2). To show that this is the same as our earlier result

(Eqs.(9.1.1), (9.1.2)), we need the following important identity:

If G EI H[ ] = − −[ ] −Σ 1 and Γ Σ Σ= −[ ]+i

Then A i G G G G G G≡ −[ ] = =+ + +Γ Γ (9.2.14)

This is shown by writing G G i+ − − +( ) − = − = −
1 1 Σ Σ Γ

then pre-multiplying with G and post-multiplying with G+  to obtain

G G i G G A G G− = − → =+ + +Γ Γ

Alternatively if we pre-multiply with and post-multiply with G we obtain

G G i G G A G G− = − → =+ + +Γ Γ

I have used this simple one contact problem to illustrate the important physical

principle that the different eigenstates are uncorrelated and so we should calculate their

contributions to the density matrix independently and then add them up.

This is a little bit like Young’s two-slit experiment. If

the two slits are illuminated coherently then the

intensity on the screen will show an interference

pattern. But if the slits are illuminated incoherently

then the intensity on the screen is simply the sum of

the intensities we would get from each slit

independently. Each eigenstate α  is like a “slit” that

“illuminates” the device and the important point is

that the “slits” have no phase coherence.

That is why we calculate the device density matrix for each ‘slit” α  independently and add

them up.

S
C
R
E
E
N
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Now that we have been through this exercise once, it is convenient to devise the

following rule for dealing with the contact and channel wavefunctions

{ }{ } ( / ) ( ) [ ( )]Φ ΦR R RdE f E A E+ ⇒ −∫ 2 0π µ (9.2.15a)

{ }{ } ( / ) [ ( )]ψ ψ π+ ⇒ ∫ dE G En2 (9.2.15b)

reflecting the fact that the electrons in the contact are distributed according to the Fermi

function f0(E-µ) in a continuous distribution of eigenstates described by the spectral

function, AR(E). This rule can be used to shorten the algebra considerably. For example, to

evaluate the density matrix we first write down the result for a single eigenstae

ψ τ{ } = { }G RΦ ! ψ ψ τ τ{ }{ } = { }{ }+ + + +G GR RΦ Φ

and then apply Eq.(9.2.15) to obtain    [ ] [ ] ( )G G A G f En
R= −+ +τ τ µ0

which reduces to Eq.(9.2.13) making use of Eq.(9.2.12).

Channel with two contacts: Now we are ready to tackle the actual problem with two

contacts. We assume that before connecting to the channel, the electrons in the source and

the drain contact have wavefunctions Φ1{ }, Φ2{ } obeying the Schrodinger equations for

the isolated contacts:

E I H i− +[ ] { } = { }1 1 0η Φ and E I H i− +[ ] { } = { }2 2 0η Φ (9.2.16)

where H H1 2[ ] [ ],  are the Hamiltonians for contacts 1 and 2 respectively and we have added

a small positive infinitesimal times an identity matrix, η[ ] = [ ]+0 I  , to introduce dissipation

as before. When we couple the device to the contacts as shown in Fig.9.2.1, these electronic

states from the contacts “spill over” giving rise to a wavefunction ψ{ } inside the device

which in turn excites scattered waves χ1{ } and χ2{ } in the source and drain respectively.
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The overall wavefunction will satisfy the composite Schrodinger equation for the composite

contact 1 - device- contact 2 system which we can write in three blocks (cf. Eq.(9.2.1)):

E I H i

EI H

E I H i

− + −
− − −

− − +

















+

+















=














+

+

1 1

1 2

2 2

1 1

2 2

0

0

0

0

0

η τ
τ τ

τ η

χ
ψ

χ

Φ

Φ

(9.2.17)

where [H] is the channel Hamiltonian. Using straightforward matrix algebra we obtain from

the first and last equations

χ τ ψ1 1 1{ } = { }+G and χ τ ψ2 2 2{ } = { }+G  (9.2.18)

where G EI H i1 1
1= − +[ ] −η and G EI H i2 2

1= − +[ ] −η (9.2.19)

are the Green’s functions for the isolated reservoirs. Using Eq.(9.2.18) to eliminate χ1{ }
, χ2{ } from the middle equation in Eqs.(9.2.2) we obtain

EI H S− − −[ ] { } = { }Σ Σ1 2 ψ (9.2.20)

where Σ1 1 1 1= +τ τG and Σ2 2 2 2= +τ τG (9.2.21)

are the self-energy matrices that we discussed in Chapter 8, The corresponding broadening

matrices (Eq.(9.1.1)) are given by

Γ1 1 1 1= +τ τA and Γ2 2 2 2= +τ τA (9.2.22)

contact 1

     device

contact 2

contact 1 device    contact 2

DrainSource

τ2[ ]

Channel

τ1[ ]

H[ ]

ψ{ }

H i1 +[ ]η

Φ1

1

{ }
+ { }χ

H i2 +[ ]η

Φ2

2

{ }
+ { }χ

Fig.9.2.1. A

channel

connected to two

contacts.
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where A i G G1 1 1= −[ ]+  and A i G G2 2 2= −[ ]+  are the spectral functions for the isolated

contacts 1 and 2 respectively. Also,

S{ } ≡ { } + { }τ τ1 1 2 2Φ Φ (9.2.23)

is the sum of the source terms τ1 1Φ  (from the source) and τ2 2Φ  (from the drain) as shown in

Fig.9.2.2.

To evaluate the density matrix, we define the channel Green’s function

G EI H≡ − − −[ ] −Σ Σ1 2
1 (9.2.24)

and use it to express the channel wavefunction in terms of the source terms from

Eq.(9.2.20):

ψ{ } = { }G S ! ψ ψ{ } { } = { } { }+ + +G S S G (9.2.25)

Note that the cross terms in the source

S S+ + + + += +τ τ τ τ1 1 1 1 2 2 2 2Φ Φ Φ Φ

+ ++ + + +τ τ τ τ1 1 2 2 2 2 1 1Φ Φ Φ Φ

are zero since Φ1 and Φ2 are the wavefunctions (before connecting to the channel) in the

source and drain contacts which are physically disjoint and unconnected. The direct terms

Fig.9.2.2. Channel excited by

τ1 1Φ  (from the source) and τ2 2Φ
(from the drain). The channel

response is decribed by

Eq.(9.1.20) and it in turn

generates χ 1{ }  , χ2{ } in the

contacts (see Eq.(9.1.18)).

Cross-terms = 0

H + +[ ]Σ Σ1 2

ψ{ }
χ1{ } χ2{ }

τ1 1Φ{ } τ2 2Φ{ }
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are evaluated using the basic principle (see Eq.(9.2.15)) that we formulated earlier with the

one-contact problem:

Φ Φ1 1 1 12+ ⇒ ∫ ( / ) ( ) ( )dE f E A Eπ (9.2.26a)

Φ Φ2 2 2 22+ ⇒ ∫ ( / ) ( ) ( )dE f E A Eπ (9.2.26b)

to write down the density matrix from ψ ψ{ } { } = { } { }+ + +G S S G

ρ π τ τ τ τ= [ ] + [ ]{ }∫ + + + +( / )dE G A G f G A G f2 1 1 1 1 2 2 2 2

Making use of Eq.(9.2.22) we can simplify this expression to write

G G Gn in= +Σ (9.2.27)

and Σ Γ Γin f f[ ] = [ ] + [ ]1 1 2 2 (9.2.28)

noting that [ ] ( / ) [ ]ρ π= ∫ dE Gn2  as defined earlier in Eq.(9.1.2). Just as Gn is obtained

ψ ψ{ } { }+, Σin is obtained from S S{ } { }+. One could thus view Eq.(9.2.27) as a relation

between the “electron density” in the device created by the source term {S} representing

the spill-over of electrons from the contacts.

Partial spectral function: Substituting Eq.(9.2.27) into Eq.(9.2.26) we can write

G A f A fn[ ] = [ ] + [ ]1 1 2 2 (9.2.29)

where A G G1 1= +Γ and A G G2 2= +Γ

Comparing this with the equilibrium result (see Eq.(9.1.2)): [ Gn] = [A] f0, it seems

natural to think of the total spectral function [A(E)] as consisting of two parts: [ A1(E)]

arising from the spill-over (or propagation) of states in the left contact and [ A2(E)] arising

from the spill-over of states in the right contact. The former is filled according to the left

Fermi function f E1( ) while the latter is filled according to the right Fermi function f E2( ).
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To show that  the two partial spectra indeed add up to give the correct total spectral function:

A = A1 + A2, we note from Eq.(9.2.14) that since the self energy Σ has two parts Σ1 and

Σ2 coming from two contacts, A G G A A= +[ ] = ++Γ Γ1 2 1 2 as stated in Eq.(8.7).

Exclusion principle ? An important conceptual point before we move on. Our approach is to

use the Schrodinger equation to calculate the evolution of a specific eigenstate Φα  from one

of the contacts and then superpose the results from distinct eigenstates to obtain the basic

rule stated in Eq.(9.2.15) or Eq.(9.2.26). It may appear that by superposing all these

individual fluxes we are ignoring the Pauli exclusion principle. Wouldn’t the presence of

electrons evolving out of one eigenstate block the flux evolving out of another eigenstate?

The answer is no, as long as the evolution of the electrons is coherent. This is easiest to

prove in the time domain, by considering two electrons that originate in distinct eigenstates

Φ1{ } and Φ2{ }. Initially there is no question of one blocking the other since they are

orthogonal: Φ Φ1 2 0{ } { } =+ . At later times their wavefunctions can be written as

  ψ1 1( ) exp /t i H t{ } = −[ ] { }h Φ

and   ψ2 2( ) exp /t i H t{ } = −[ ] { }h Φ

if both states evolve coherently according to the Schrodinger equation:   i d dt Hh ψ ψ{ } = [ ] { }/

It is straightforward to show that the overlap between any two states does not change as a

result of this evolution: ψ ψ1 2 1 2( ) ( )t t{ } { } = { } { }+ +Φ Φ . Hence wavefunctions

originating from orthogonal states remain orthogonal at all times and never “Pauli block”

each other. Note, however, that this argument cannot be used when phase-breaking processes

(briefly explained in the introduction to this Chapter) are involved since the evolution of

electrons cannot be described by a one-particle Schrodinger equation.
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9.3. Inflow / Outflow

Now that we have derived the results for the non-equilibrium density matrix (see

Eqs.(9.1.3)-(9.1.6)), let us discuss the current flow at the terminals (Eqs.(9.1.7)-(9.1.9)). As

before let us start with the “one-contact” problem.

Channel with one contact: Consider again the problem of a channel connected to one

contact described by

E
H

H iR

ψ τ

τ η

ψ
Φ Φ









=
+



















+

which is the same as Eq.(9.2.1) with Φ{ } ≡

ΦR +{ }χ  for clarity. How can we evaluate

the current flowing between the channel and the contact?

Just as we did in Section 5.4 (when discussing the velocity of a band  electron), we need to

look at the time-dependent version of this equation

  

i
d
dt

H

H iR
h

ψ τ

τ η

ψ
Φ Φ









=
+



















+

and obtain an expression for the time rate of change in the probability density inside the

channel which is given by Trace[ψψ+] = Trace[ψ ψ+ ] = ψ ψ+  (note that ψ ψ+  is just a

number and so it does not matter if we take the trace or not):

  
I

d
dt

Trace

i
≡ =

−[ ]+
+ + +

ψ ψ
ψ τ τ ψΦ Φ

h
(9.3.1)

Noting that Φ{ } ≡ ΦR +{ }χ , we can divide this net current, I conceptually into an inflow,

proportional to the “incident” wave ΦR{ }, and an outflow proportional to the “scattered”

wave χ{ }:

H[ ]

Channel

ΦR{ }
+ { }χ

H iR +[ ]η

Contact

τ[ ] ψ{ }
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I
Trace

i

Trace

i

R R

Inflow Outflow

=
−[ ]

−
−[ ]+ + + + + +ψ τ τ ψ χ τ ψ ψ τ χΦ Φ

h1 24444 34444 h1 24444 34444
(9.3.2)

Making use of Eq.(9.2.4) and (9.2.7) we can write the inflow as

  
Inflow Trace S G S S GS i Trace SS A= −[ ] = [ ]+ + + +/ /h h

since i [ G G− +] ≡  [A]. To obtain the total inflow we need to sum the inflow due to each

contact eigenstate α  all of which as we have seen is taken care of by the replacement (see

Eq.(9.2.15))

Φ ΦR R R
dE

f E A E+ ⇒ −∫
2 0π

µ( ) ( )

Since S R= τ Φ , this leads to

SS
dE

f E A
dE

f ER
+ +⇒ − = − [ ]∫ ∫

2 20 0π
µ τ τ

π
µ( ) ( ) Γ

so that the inflow term becomes

  
Inflow

dE
f E Trace A= − [ ]∫1

2 0
h π

µ( ) Γ (9.3.3a)

Similarly we make use of Eqs.(9.2.2) and (9.2.12) to write the outflow term as

  
Outflow Trace G G i TraceR R= −[ ] = [ ]+ + + + + +ψ τ τ ψ ψ τ τ ψ ψψ/ /h hΓ

On summing over all the eigenstates ψψ π+ ⇒ ∫ dE Gn /2 , so that

  
Outflow

dE
Trace Gn= [ ]∫1

2h π
Γ (9.3.3b)
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It is easy to see that the inflow and outflow are equal at equilibrium, since G Afn = 0  (see

Eq.(9.1.2)).

Channel with two contacts: Now we are ready to calculate the inflow and outflow for the

channel with two contacts. We consider one of the interfaces, say the one with the source

contact, and write the inflow as (cf. Eq.(9.3.2))

  

I
Trace

i

Trace

i
Inflow Outflow

1
1 1 1 1 1 1 1 1

=
−[ ]

−
−[ ]+ + + + + +ψ τ τ ψ χ τ ψ ψ τ χΦ Φ

h1 24444 34444 h1 24444 34444

Making use of the relations ψ = G S(S, G defined in Eqs.(9.2.23) and (9.2.24)) and

S1 1 1{ } ≡ { }τ Φ , we can write

  
Inflow Trace S G S S GS i= −[ ]+ + +

1 1 / h
  

= [ ]+Trace S S A1 1 /h

since S S S= +1 2 and S S S S1 2 2 1
+ +=  = 0.

I2

DrainSource

τ2[ ]

Channel

τ1[ ] ψ{ }Φ1

1

{ }
+ { }χ

Φ2

2

{ }
+ { }χ

I1
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Next we sum the inflow due to each contact eigenstate α  all of which is taken care

of by the replacement (see Eq.(9.2.26))

{ }{ } ( / ) ( ) [ ( )]Φ Φ1 1 1 12+ ⇒ ∫ dE f E A Eπ

leading to { }{ } [ ]S S1 1 1 1 1 1
+ + += τ τΦ Φ

⇒ =+∫ ∫( / ) [ ] ( ) ( / ) [ ] ( )dE A f E dE f E2 21 1 1 1 1 1π τ τ π Γ

so that
  
Inflow dE f E Trace A= [ ]∫1

2 1 1
h

( / ) ( )π Γ (9.3.4a)

Similarly we make use of Eqs.(9.2.18) and (9.2.22) to write the outflow term as

  
Outflow Trace G G i Trace= −[ ] = [ ]+ + + + + +ψ τ τ ψ ψ τ τ ψ ψψ1 1 1 1 1 1 1/ /h hΓ

On summing over all the eigenstates { }{ } ( / ) [ ]ψ ψ π+ ⇒ ∫ dE Gn2 , so that

  
Outflow dE Trace Gn= [ ]∫( / ) ( / )1 2 1h π Γ (9.3.4b)

The net current Ii at terminal ‘i’ is given by the difference between the inflow and the

outflow (multiplied by the charge ‘ – q’ of an electron) as stated in Eq.(9.1.7)

  

I q dE I Ei i= −
−∞

+∞
∫( / ) ( / ) ˜ ( )h 2π

with Ĩ Trace A f Trace Gi i i
n= [ ] − [ ]Γ Γ1 (9.3.5)

and illustrated in Fig.9.1.2.
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9.4. Transmission

In the last Section we have obtained expressions for the current at each of the contacts

which can be expressed as the difference between an inflow and an outflow. In this Section

we will express the current in a slightly different form that gives a different perspective to the

problem of current flow and helps establish a connection with the transmission formalism

widely used in the literature. We start by combining Eq.(9.1.7) with Eqs. (9.1.3) and (9.1.6)

to write

I T E f E f E1 12 1 2= −[ ]( ) ( ) ( )  where T E Trace A12 1 2( ) ≡ [ ]Γ

and I T E f E f E2 21 2 1= −[ ]( ) ( ) ( ) where T E Trace A21 2 1( ) ≡ [ ]Γ

We expect the currents at the two terminals to be equal and opposite and this is ensured if

Trace [ Γ1 2A ] = Trace [ Γ2 1A ]. To show that they are indeed equal, we make use of

Eq.(9.2.14) to show that

Trace [Γ1 A] = Trace [Γ Γ1 G G+] = Trace [Γ ΓG G+
1 ] = Trace [ΓA1]

Subtracting Trace[Γ1 1A ] from both sides we obtain the desired result that Trace [ Γ1 2A ] =

Trace [Γ2 1A ], noting that Γ Γ Γ= +1 2 and A= A A1 2+ ). This allows us to write the current

as (noting that 2  πh  = h)

I q h dE T E f E f E= ( ) − ( )[ ]
− ∞

+ ∞
∫( / ) ( ) 1 2 (9.4.1)

where T E( ) ≡   Trace [Γ1 2A ]   =   Trace [Γ2 1A ]

= [ ] = [ ]+ +Trace G G Trace G GΓ Γ Γ Γ1 2 2 1 (9.4.2)

is called the transmission function. Physically we can view the current in Eq.(9.4.1) as the

difference between two counterpropagating fluxes, one from the source to the drain and the

other from the drain to the source as sketched in Fig.9.4.1. One could view the device as a

“semipermeable membrane” that separates two reservoirs of electrons (source and drain)

and the transmission function T E( )  as a measure of the permeability of this membrane to

electrons with energy E. We will show that the same function T E( )  will govern both fluxes

at least as long as transport is coherent.
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Fig.9.4.1. The net current through the device (Eq.(9.2)) can be viewed as the

difference between two counterpropagating fluxes from electrons, (a) one from

the source to the drain and (b) the other from the drain to the source.

Transmission formalism: In the transmission formalism (sometimes referred to as the

Landauer approach) the device is assumed to be connected to the contacts by two uniform

leads which can be viewed as quantum wires with multiple modes or subbands (see Chapter

5) having well-defined E-k relationships as sketched in Fig.9.4.1. This allows us to define an

S-matrix for the device analogous to a microwave waveguide where the element tnm of the t-

matrix tells us the amplitude for an electron incident in mode ‘m’ in lead 1 to transmit to a

mode ‘n’ in lead 2. It can then be shown that the current is given by Eq.(9.1.1) with the

transmission function given by

T E t Trace t tnm
nm

( ) = = [ ]∑∑ +2
(9.4.3)

This viewpoint, which is very popular, has the advantage of being based on relatively

elementary concepts and also allows one to calculate the transmission function by solving a

scattering problem. In the next section we will show with simple examples that this approach

yields the same result as that obtained from T  = Trace [ Γ Γ2 1G G+] applied to devices with

uniform  leads

(b) Flux of electrons from the

drain to the source ( f1 0= )

I D S T E f E→( ) = ( )( ) 2

µ2

DrainSource

Device

I S D T E f E→( ) = ( )( ) 1

µ1

DrainSource

Device

(a) Flux of electrons from the

source to the drain ( f2 0= )
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Fig.9.4.1. In the transmission formalism, the device is assumed to be connected

to the contacts by two uniform leads which can be viewed as quantum wires with

multiple subbands (see Chapter 5) having well-defined E-k relationships as

sketched above. This allows us to define an S-matrix for the device analogous to

a microwave waveguide.

.

Landauer formula: Landauer pioneered the use of the scattering theory of transport as a

conceptual framework for clarifying the meaning of electrical conductance and stressed its

fundamental connection to the transmission function: “Conductance is transmission”. This

basic relation can be seen starting from Eq.(9.4.1) (making use of Eq.(9.1.1))

I q h dE T E f E f E= −( ) − −( )[ ]
− ∞

+ ∞
∫( / ) ( ) 0 1 0 2µ µ
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E
 -

 E
c 

( 
eV

 )
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->
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and noting that the current is zero at equilibrium since µ1 = µ2. A small bias voltage V

changes each of the functions T , µ1 and µ2 and the resulting current can be written to first

order as (δ denotes a small change)

I q h dE T E f E f E≈ −( ) − −( )[ ]
− ∞

+ ∞
∫( / ) ( )δ µ µ0 1 0 2

+ ( / ) ( )q h dE T E f E f E
− ∞

+ ∞
∫ −( ) − −( )[ ]δ µ µ0 1 0 2

The first term is zero and the second can be written as

I q V h dE T E f E E E≈ −( )
− ∞

+ ∞

=∫( / ) ( ) ( ) /2
0∂ ∂ µ

so that the conductance is given by

G q h T= ( / )2
0 where T dE T E F ET0 ≡ −

− ∞

+ ∞
∫ ( ) ( )µ (9.4.4)

and FT  is the thermal broadening function discussed in Chapter 8, which is peaked sharply

around E = µ with a width proportional to k TB  (see Fig.7.3.4). The conductance is thus

proportional to the transmission function averaged over an energy range of a few k TB

around the equilibrium electrochemical potential µ,  just as the quantum capacitance is

proportional to the averaged density of states (cf. Eq.(7.3.8)).

The maximum value of the transmission function (and hence the conductance) is

obtained if each of the M subbands or modes in one lead transmits perfectly to the other lead

(see Fig.9.4.2). The matrix [ t t+] then  is a diagonal matrix of size (MxM) with 1’s along the

diagonal, so that the transmission is equal to M. This suggests that the maximum

transmission is equal to the number of modes ‘M’ in the leads. But what happens if the

device is narrower than the lead and has only ‘N’ modes, N < M ?
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It can be argued that such a structure could not have a transmission any greater than a

structure with the leads the same size as the device

since in either case the electrons have to transmit through the narrow device region

(assuming that the device is not so short as to allow direct tunneling). Since this latter

structure has a maximum transmission of ‘N’ that must be true of the first structure as well

and detailed calculations do indeed show this to be the case. In general we can expect that the

maximum transmission is equal to the number of modes in the narrowest segment. Earlier in

Chapter 6, we had argued that the maximum conductance of a wire with ‘N’ modes is equal

to (q h2 / ) N based on the maximum current it could possibly carry.

Buttiker equations: Conductance measurenments are often performed using a four probe

structure (Fig.9.4.2) and their interpretation in small structures was initially unclear, till

Buttiker came up with an elegant idea [9.1]. He suggested that the Landauer formula

G q h T I q h T= → = −[ ]( / ) ˜ ( / ) ˜2
1 2µ µ

be extended to structures with multiple terminals by writing the current Ii at the ith terminal

as

I q h Ti
j

ij i j= −[ ]∑( / ) ˜ µ µ (9.4.5)

  ‘M’ modes   ‘M’ modes‘N’ modes

‘N’ modes    ‘N’ modes‘N’ modes
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where T̃ij  is the average transmission from terminal ‘j’ to ‘i’. We know the

electrochemical potentials µ at the current terminals (1 and 2) , but we do not know them at

the voltage terminals which float to a suitable potential so as to make the current zero. How

do we calculate the currents from Eq.(9.4.5) since we do not know all the potentials? The

point is that of the eight variables (four potentials and four currents), if we know any four,

we can calculate the other four with simple matrix algebra. Actually, there are six

independent variables. We can always set one of the potentials to zero, since only potential

differences give rise to currents. Also, Kirchhoff’s law requires all the currents to add up to

zero, so that knowing any three currents we can figure out the fourth. So it is convenient to

set the potential at one terminal (say #2) equal to zero and write Eq.(9.4.5) in the form of a

(3x3) matrix equation.

I

I

I

q
h

T T T T T

T T T T T

T T T T T

1

3

4

12 13 14 13 14

31 31 32 34 34

41 43 41 42 43

1

3

4















=

+ + − −

− + + −

− − + +

































˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

µ
µ
µ

Knowing µ1 3 40 0, ,I I= = , we can calculate I1 3 4, ,µ µ  and hence the four-probe

conductance

G qIfour probe− = −( )µ µ3 4 1/

We can visualize the Buttiker equations with a simple circuit model if the transmission

coefficients are reciprocal, that is, if ˜ ˜T Tij ji= . These equations are then identical to

Deviceµ1 µ2

µ3 µ4

V

Fig.9.4.2. Conductance

measurements are

commonly carried out in a

four-probe configuration

that can be analyzed

using the Buttiker

equations.
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Kirchhoff’s law applied to a network of conductors G T Tij ij ji∝ =˜ ˜  connecting each pair of

contacts ‘i’ and ‘j’ (see Fig.9.4.3).

But this picture  cannot be used if the transmission coefficients are non-reciprocal: ˜ ˜T Tij ji≠ ,

as they are in Hall effect measurements where a magnetic field is present and some of the

most notable applications of the Buttiker equations, Eq.(9.4.4), are to the interpretation of

such measurements.

Buttiker probes: We have mentioned earlier that the scattering theory of transport can only

be used if the electrons transmit coherently through the device so that an S-matrix can be

defined. But floating probes effectively extract electrons from the device and reinject them

after phase randomization, thus effectively acting as phase-breaking scatterers. This is a

seminal observation due to Buttiker which provides a simple phenomenological technique for

including the effects of phase-breaking processes in the calculation of current. We simply

connect one or more purely conceptual floating probes to the device and then calculate the

net current using the Buttiker equations, which can be applied to any number of terminals.

We could even use the general current equation (see Eq.(9.1.1)), rather than the low

bias conductance relation) extended to include multiple floating probes:

I q h dE I Ei i=
− ∞

+ ∞
∫( / ) ( ) (9.4.6)

where I E T E f E f Ei
j

ij i j( ) ( )= ( ) − ( )[ ]∑ (9.4.7)

µ1 µ2

µ3 µ4G34G13 G24

G23

G12

G14

Fig.9.4.3. The

Buttiker equations

can be vcisualized in

terms of a conductor

network, if the

transmission

between terminals is

reciprocal.
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One could then adjust  the potential µ j to make the current at each energy equal to zero:

I Ej( ) = 0. In principle this could result in different values for µ j at different energies.

Alternatively, we could require a single value for µ j at all energies which is adjusted to make

the total current at all energies equal to zero dE I Ej∫ ( ) = 0. One could then have positive

values of I Ej( ) at certain energies balanced by negative values at other energies making the

total come out zero, indicating a flow of electrons from one energy to another due to the

scattering processes that the ”probe” is expected to simulate. This makes the detailed

implementation more complicated since different energy channels get coupled together.

The transmission coefficients at a given energy are usually calculated from the S-

matrix for the composite device including the conceptual probes:

Tij = Trace [ s E s Eij ij( ) ( )+ ]. (9.4.8)

But we could just as well combine this phenomenological approach with our Green’s

function method  using separate self-energy matrices [ Σi] to represent different floating

probes and then use the expression

T E Trace G Gij i j( ) [ ]= +Γ Γ (9.4.9)

to evaluate the transmission. This expression can be derived using the same procedure

described earlier for two-terminal structures. The current at terminal ‘i’ is given by the

difference between the inflow and outflow:

   I E Trace E A E f G Ei i i
n( ) ( / ) ( [ ( )] ( [ ( )] [ ( )] ))= −1 h Γ

Making use of the relations  A G Gj
j

= +∑ Γ and G G G fn
j j

j

= +∑ Γ

(cf. Eq. (9.2.14))   (cf. Eq.(9.2.27))
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we can write I Ei( )

  

= −∑ +( / ) [ ] ( )1 h

q
i j i jTrace G G f fΓ Γ

so that the current can be written as

  

I E T f fi
j

ij i j( ) ( / ) ( )= −∑1 h          (9.4.10)

in terms of the transmission function defined above in Eq.(9.4.9).

Sum rule:  A very useful result in the scattering theory of transport is the requirement that

the sum of the rows or columns of the transmission matrix equals the number of modes:

T T Mij
j

ji
j

i∑ ∑= = (9.4.11)

where Mi is the number of modes in lead ‘i’. One important consequence of this sum rule is

that for a two-terminal structure T12 = T21, even in a magnetic field, since with a (2x2) T

matrix

T T

T T
11 12

21 22













we have T T M T T T T11 12 1 11 21 12 21+ = = + → =

Note that a similar argument would not work with more than two terminals. For example,

with a three terminal structure we could show that T T T T12 13 21 31+ = + , but we could not

prove that T T12 21=  or that T T13 31= .

The Green’s function-based expressions for the transmission (see Eq.(9.3.7)) also

yield a similar sum rule:

T T Trace Aij
j

ji
j

i∑ ∑= = [ ]Γ (9.4.12)

This is shown by noting that
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T Trace G G Trace G G Trace Aij
j

i j
j

i i∑ ∑= [ ] = [ ] = [ ]+ +Γ Γ Γ Γ Γ

where we have made use of Eq.(9.2.14) in the last step. Similarly,

T Trace G G Trace G G Trace Aji
j

i
j

i i∑ ∑= [ ] = [ ] = [ ]+ +Γ Γ Γ Γ Γ

The quantity Trace [Γi A] thus plays the same role that the number of modes Mi plays in the

scattering theory of transport. Interestingly, while Mi is an integer, Trace [Γi A] can take on

any non-integer value. For example, if the device were a really small one having just one level

with E = ε, communicating with multiple reservoirs then

Γ Γ
Γ

i
iA

E
=

−( ) + ( )ε 2 22/
with Γ Γ= ∑ i

i

which has the shape of a Lorentzian if the broadening is energy-independent. Clearly this

can have any fractional value.
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9.5. Examples

9.5.1. An analytical example: To see that the Green’s function formalism gives the same

answer as the scattering theory of transport it is instructive to go through a simple example

where the results are easily worked out on paper. Consider for example, a linear conductor

with a repulsive potential U(z) = U z0 δ( )

at z = 0. The coefficients ‘r’ and ‘t’

 are obtained by requiring that the

wavefunction be continuous

at z = 0 :

ψ ψ[ ] − [ ] = → − + == =+ −z z t r0 0 0 1 0( )       (9.5.1a)

and that the derivative be discontinuous by

   

  

d
dz

d
dz

mU
ik t r

mU t

z z
z

ψ ψ ψ






−






= [ ] → − −( )[ ] =
= + = − =

0 0

0
2 0

0
2

2
1

2

h h

       (9.5.1b)

Eqs.(9.5.1a,b) are solved to yield

  

t
i v

i v U
T t

v

v U
=

−
→ = =

+
h

h

h

h0

2
2 2

2 2
0
2

Finite difference method: Let us now re-do this problem using a discrete lattice with points

spaced by ‘a’, the central cell having an extra potential (U a0 / ) for the delta function.

We can carry out a discrete lattice version of the calculation described above, starting from

t ikzexp [ ]

z = 0

exp ikz[ ]
r ikzexp −[ ]

 n =  - 3        - 2        - 1         0         + 1         + 2        + 3

E tc + 2 0 E tc + 2 0

− t0

  t m ac0
2 22≡ h /

E t

U a
c +

+ ( )
2 0

0 /

− t0− t0

a

exp (+ ikna)
t exp (+ ikna)

r exp (- ikna)
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E E t U a t tcψ ψ ψ ψ0 0 0 0 0 1 0 12= + + ( )( ) − −− +/ (9.5.2)

and then writing ψ0 1= + =r t

ψ+ = +[ ]1 t ikaexp
ψ− = −[ ] + +[ ]1 exp expika r ika

so that ψ ψ+ = +[ ]1 0 exp ika
ψ ψ− = − [ ] + +[ ]1 02i ka ikasin exp (9.5.3)

Substituting back into Eq.(9.5.2), we have

E E t U a t ika i t kac− − − [ ] + +[ ]( ) =2 2 20 0 0 0 0/ exp sinψ

Making use of the dispersion relation

  E E t ka v E at kac= + −( ) → =2 1 20 0cos ( ) sinh (9.5.4)

this is simplified to − [ ] + [ ]( ) =U a i t ka i t ka0 0 0 02 2/ sin sinψ

that is,
  
ψ0

0
=

−
i v

i v U
h

h
(9.5.5)

Hence the transmission is given by

  

T E t
v E

v E U
( )

( )

( )
= = =

+
2

0
2

2 2

2 2
0
2

ψ h

h
(9.5.6)

Green’s function method: Finally let us do this problem using the Green’s function

formulation presented in this Chapter. We treat just one point as the ‘device’ with a (1x1)

Hamiltonian given by

H E t U ac[ ] = + + ( )2 0 0 /
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while the effects of the two semi-infinite leads (one on each side) are represented by (1x1)

self-energy matrices as discussed in Chapter 8:

Σ1 0( ) expE t ika[ ] = − ( ) and Σ2 0( ) expE t ika[ ] = − ( )

where ‘ka’ is related to the energy ‘E’ by the dispersion relation (see Eq.(9.5.4)), so that

  
Γ Σ Σ1 2 1 2 1 2 02, , ,( ) sin /E i t ka v a[ ] = −[ ] = =+ h

Since all matrices are (1x1) in size, it is easy to write down the Green’s function:

G EI H

E E t t ika U ac

= − − −[ ]
= − − + ( ) − ( )[ ]

−

−

Σ Σ1 2
1

0 0 0
1

2 2 exp /

Using the dispersion relation to simplify as before

  G i t ka U a a i v U= − ( )[ ] = −( )−
2 0 0

1
0sin / / h

so that the transmission is given by

  

T E Trace G G
v E

v E U
( )

( )

( )
= [ ] =

+
+Γ Γ1 2

2 2

2 2
0
2

h

h

 in agreement with the earlier result.

E tc + 2 0E tc + 2 0 E t

U a
c +

+ ( )
2 0

0 /

 n =  - 3        - 2        - 1         0         + 1         + 2        + 3

− t0

  t m ac0
2 22≡ h /

− t0− t0

a

Channel

− t0

Contact 1 Contact 2
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9.5.2. Numerical example: The real power of the Green’s function method, of course lies

not in simple problems like this, but in its ability to handle complex problems without the

need for any additional formulation or setting up. Given a Hamiltonian [H] and self-energy

matrices Σ1( )E  and Σ2( )E , the procedure is mechanical: Eqs.(9.1.1) and (9.1.2) can be

applied blindly to evaluate the transmission. Of course, complicated contacts can require

some extra effort to evaluate the appropriate self-energy matrices, but it is a one-time effort.

Besides, as we have mentioned earlier, one can make a reasonable guess based on

Eqs.(8.3.12) and (8.3.14) without a detailed calculation – a procedure that can be justified

physically by arguing that one never knows the precise shape of the contacts anyway. The

examples we discuss below are all based on one-dimensional leads for which the self-

energy is written down easily.

We use a one-dimensional discrete lattice with a = 0.3 nm to model each of the

following devices which are assumed to be single-moded in the transverse (x- and y-)

directions (Fig.9.5.1). The barrier regions indicated as     have a conduction band that is

0.4 eV higher than the rest. We assume that the effective mass ( mc= 0.25m) is the same

Σ1[ ]

c. Resonant
tunneling

device

b. Tunneling
device

a. Ballistic
device

Fig.9.5.1. Three device examples: (a) Ballistic device, (b) Tunneling

device and (c) Resonant tunneling device. Barrier regions denoted by

 have a conduction band edge 0.4 eV higher.

29

32161
z / a

35 5019

26

H[ ] Σ2[ ]
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everywhere. Fig.9.5.2 shows the (non self-consistent) equilibrium band diagram and

transmission functions T E( )  calculated numerically for each of these devices from the

Hamiltonian matrix [H] and the self-energy matrices Σ1 2, ( )E .

Fig.9.5.2. Equilibrium band diagram and transmission function

 for each of the devices in Fig.9.5.1.
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For the ballistic device the transmission is zero for energies below the band-edge Ec

and increases to one above the band-edge. For the tunneling device, the transmission

increases from zero to one, though more slowly. The transmission for a resonant tunneling

device, on the other hand, shows a very different behavior with two sharp resonances that

can be understood by noting that the two barriers create a “box” with discrete energy levels

(see Chapter 1, Section 1.1). The transmission from left to right peaks whenever the energy

matches one of these levels. It is possible to obtain the same results by matching

wavefunctions and derivatives across different sections, but the process quickly gets

cumbersome. Arbitrary potential profiles, however, are easily included in the Hamiltonian

[H] and the transmission is then calculated readily from the Green’s function formalism:

T (E) = Trace [Γ Γ1 2G G+].

In calculating the transmission through devices with sharp resonances (like the

resonant tunneling device) it is often convenient to include a Buttiker probe (see Section 9.4)

The reason is that it is easy to miss very sharp resonances in a numerical calculation if the

energy grid is not fine enough. A Buttiker probe simulates the role of phase-breaking

µ1 µ2

µ3G13
G24

G12

Fig. 9.5.3.

Fig. 9.5.4.
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processes thereby broadening the resonance. The effective transmission is calculated by

solving the Buttiker equations (see Eq.(9.4.5)) as explained in the last Section. In this case

the transmission between different terminals is reciprocal so that we can calculate the

effective transmission from a simple resistor network (see Fig. 9.4.3) adapted to three

terminals.

Noting that the conductance is proportional to the transmission we can write the

effective transmission using the elementary law of addition for conductors in series and in

parallel:

T E T E
T E T E

T E T Eeff ( ) ( )
( ) ( )

( ) ( )
= +

+12
13 23

13 23
(9.5.7)

Fig.9.5.5 shows the effective transmission for a resonant tunneling device with one Buttiker

probe attached to the center of the device. Compared to the earlier result without a probe, the

resonances are broadened somewhat, especially the sharpest one.

Current (I) – Voltage (V) characteristics: Eq.(9.1.9) can be used to calculate the I-V

characteristics of any coherent device, provided we know how the applied voltage drops

Fig.9.5.5. Effective transmission function for a resonant tunneling

device including a Buttiker probe located at lattice site # 25 at the

center of the device to simulate the effect of phase-breaking

processes phenomenologically. Dotted curve shows result from

Fig.9.4.2c without a Buttiker probe.

Σ2[ ]Σ1[ ]

29
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35 5019

26

H[ ]

Σ3 25 25 0 25( , ) ( . )= − i eV

Buttiker probe

0 0.2 0.4 0.6 0.8 1-0.2

0

0.2

0.4

0.6

0.8

 Transmission ---> 

 E
n

e
rg

y 
( 

e
V

 )
 -

--
>

 



Chapter 9 /  Coherent transport

datta@ecn.purdue.edu All rights reserved

3 1 3

across the device. This is not important if we are only interested in the low bias conductance

(or “linear response”), but can be of paramount importance in determining the shape of the

full current-voltage characteristics as discussed in Section 1.4.

In general, for quantitatively correct results, it is important to solve for the potential profile

self-consistently. Just like the equilibrium problem (see Fig.7.2.1), we should include a

self-consistently determined potential U in the total Hamiltonian H H U= + [ ]( )0 δρ .

This potential U represents the average potential that an electron feels due to the

change δρ  in the electron density, or more generally the density matrix. The first step in this

process is to calculate the electron density from the diagonal elements of the density matrix.

This electron density can then be used in the Poisson equation to calculate the potential

which is then included in the Hamiltonian to recalculate the electron density and so on till

the process converges as sketched above. A full self-consistent calculation like this can be

time-consuming (we will describe a simple one in Section 11.4) and so it is common to

assume a “reasonable” potential profile. What is a reasonable profile?

The basic principle is straightforward. If the channel were insulating (low quantum

capacitance, see Eq.(7.3.8)), the potential profile would be given by the Laplace potential

  U rL( )
r

, obtained by solving the Laplace equation. But if it were metallic (large quantum

capacitance), the profile would be given by the “neutral potential”   U rN( )
r

 obtained from

the transport equation assuming perfect space charge neutrality everywhere. The correct

potential profile is intermediate between these extremes. In regions of low density of states

the quantum capacitance is small and the potential profile will tend to follow   U rL( )
r

 while in

regions with high density of states the quantum capacitance is large and the potential profile

will tend to follow   U rN( )
r

. The common practice for choosing a “reasonable profile” is to

assume that the potential follows   U rN( )
r

 (that needed to maintain charge neutrality) at the

“Poisson” Equation

H U

Eqs

I Eq or

0 1 2 1 2

8 1 8 3 8 5

8 7 8 8

, , , , ,

.( . ) , ( . ) ( . )

.( . ) ( . )

Σ Σ µ µ
ρ→ −

→

ρ → U

Fig. 9.5.6.
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ends which should be regions of high density of states, while in the central channel region

the profile is assumed to follow the Laplace potential   U rL( )
r

.

Fig.9.5.7 shows the I-V characteristics for (a) the ballistic device, (b) the tunneling

device and (c) the resonant tunneling device calculated assuming that the potential drops

linearly across the central unshaded region in Fig.9.5.1. This assumed potential profile gives

reasonable qualitative features, but it is easy to check that the results can change quantitatively

if we choose different profiles. We will talk about this further in Section 11.4 when we

discuss the factors that influence the ON current of a nanotransistor.
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(a) Ballistic device

 (b)Tunneling device

(c) Resonant tunneling device
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Fig.9.5.7. Current (I) versus voltage (V) characteristics of the three devices

shown in Fig.9.5.2 calculated assuming the linear potential profile shown.

The left panel shows the assumed band diagram at a bias of 0.5 V.
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Exercises

E.9.1. Use a one-dimensional discrete lattice with a = 0.3 nm to model each of the devices

shown in Fig.9.3.1 which are assumed to be single-moded in the transverse (x- and y-

directions). Assume that the effective mass ( mc = 0.25m) is the same everywhere. The

barrier regions indicated as       have a conduction band that is 0.4 eV higher than the

rest.

(a) Set up an energy grid over the range -.2 eV < E < .8 eV and plot the transmission

probability as a function of energy. Compare with Fig.9.3.2.

(b) Plot the transmission probability as a function of energy for the resonant tunneling

device using a Buttiker probe as indicated in Fig.9.3.3.

E.9.2. (a) Calculate the current (I) – voltage (V) characteristics in the bias range of 0 < V <

1V. assuming that the applied bias drops across the device following the profile shown in

Fig.9.4.1. Assume the equilibrium Fermi energy to be E eVf = 0 1.  and the chemical

potentials in the two contacts under bias to be µ1 2= +E qVf /  and µ2 2= −E qVf / . The

energy integration needs to be carried out only over the range µ1 4+ k TB  < E < µ2 4− k TB .

Use an energy grid with ∆E k TB≈ 0 2. .

(b) Calculate the electron density n(x) per unit length assuming that the applied bias of

0.5V  drops across the tunneling device following the profile shown in Fig.9.4.1.

E.9.3. Transfer Hamiltonian: Starting from the expression for the transmission in

Eq.(9.3.2), T E Trace G G( ) [ ]= +Γ Γ1 2

and making use of the expressions for the broadening matrices in Eq.(9.1.22) show that

T E Trace A MA M( ) [ ]= +
1 2

Channel

τ1
τ2

A1 A2
G

Source Drain

Fig. E.9.3
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where A1 and A2 are the spectral functions in the two contacts and the matrix element M is

given by M G= +τ τ1 2.

This form is similar to the version often seen in connection with the transfer Hamiltonian

formalism (see for example, Eq.(2.3.5) on p.69 of C.J. Chen, Introduction to Scanning

Tunneling Microscopy, Oxford (1993)). In the transfer Hamiltonian formalism the matrix

element M is assumed to be unaffected by the coupling to the contacts which is assumed to

be small, But in the present formulation ‘G’ and hence ‘M’ is affected by the contacts

through the self-energy due to the contacts.

E.9.4. 2-D cross-section: In the examples of Sections 9.3, 9.4 we have assumed that the

device is one-dimensional. The 2-D cross-section can be included in a simple way, if we

assume periodic boundary conditions and assume that all the transverse modes are

decoupled as we did when calculating the capacitance in Chapter 6. We could then simply

sum our 1-D result over all the transverse modes represented by the two-dimensional vector

  
r
k  to write (  ε

r hk ck m= 2 2 2/ ):

  

I
q

dE T E f E f E
k

k k= + − − + −[ ]∑ ∫
−∞

+∞

2 0 1 0 2π
ε µ ε µ

h r
r r( ) ( ) ( )

The transmission function depends only on the longitudinal energy E while the Fermi

functions are determined by the total energy E +   ε
r
k. The summation over   

r
k  can be carried

out analytically to write  (S: cross-sectional area)

  

I
S

q
dE T E f E f ED D= − − −[ ]

−∞

+∞
∫π

µ µ
h

( ) ( ) ( )2 1 2 2

This means that the current in a device with a 2-D cross-section is obtained using the same

procedure that we used for a 1-D device, provided we use the k-summed Fermi function

f D2 (see Eq.(6.2.12) in place of the usual Fermi function. Repeat Prob.9.2 using f D2  (see

Eq.(6.2.12)) instead of the Fermi function f0 to account for a device with a 2-D cross-

section. The current should now be expressed in A / m2 and the electron density should be

expressed in / m3.
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E.9.5. 1-D cross-section:

In analyzing Field Effect Transistors, we often have a 1-D cross-section (y-direction) to sum

over, while the transmission has to be calculated from a 2-D problem in the z-x plane.

Assuming periodic boundary conditions in the y-direction show that the 1-dimensional k-

sum can be done analytically to obtain

  

I
W

q
dE T E f E f ED D= − − −[ ]

−∞

+∞
∫π

µ µ
h

( ) ( ) ( )1 1 1 2

where the 1-D k-summed Fermi function is given by

  
f E

m k T E
k TD

c B

B
1 2 1 2

2
( ) ≡







 ℑ −









−

πh
/

with ℑ ( ) ≡
+ −( )

= ℑ−

+ ∞

+∫1 2
0

1 2
1

1
1

/ /exp
( )x

dy
y x x

d
dx

x
π

where ℑ+1 2/ ( )x  was defined in Eq.(7.2.23).
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