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9/ Coherent transport

9.1. Overview

9.2. Non-equilibrium density matrix
9.3. Inflow and outflow

9.4. Transmission

9.5. Examples

(Thereader may wish to review Section 1.6 before reading this chapter)

9.1. Overview

Since this Chapter is rather long, let me start with a detailed overview, that can aso
serve as a “summary”. In Chapter one, | described a very smple model for current flow,
namely a single level € which communicates with two contacts, labeled the source and the
drain. The strength of the coupling to the source (or the drain) was characterized by the rate
v1/h (or yo/h) a which an eectron initially occupying the level would escape into the
source (or the drain).

1 D(E)fL(E) Y2D(E)f2(E)
Fig.9.1.1. Flux of = <=

electrons into and out

of a channel:

Independent level yln(E) )

model, see EQs.(1.6.4)
- (1.6.6)

~Eh =
Source Drain

| pointed out that the flow of current is due to the difference in “agenda’ between the source
and the drain, each of which is in a state of locd equilibrium, but are maintained a two
different electrochemical potentials and hence with two distinct Fermi functions

1
exp (E-pq)/kgT)+1

_ B _ 1
f2(E) = fo(E-pp) = o0 ((E—1ip)/kgT) + 1 (9.1.1b)

f1(E) = foE-m) (9.1.13)
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278 Quantum Transport: Atom to Transistor

by the applied bias V : py,—py=—qV. The source would like the number of electrons
occupying the level to be equal to f1(g) while the drain would like to see this number be f5(g).
The actua steady state number of eectrons, N lies somewhere in-between and the source
keeps pumping in electrons while the drain keeps pulling them out, each hoping to establish
equilibrium with itself. In the process, a current flows in the external circuit.

Trace[I1 Al f1/2n —> <= Trace[lL A fy/2r

é % M2
21 — 22

Trace[FlG”] 21 <}:| —> Trace[FZG”] 121

Source | ‘V Dra"n

Fig.9.1.2. Inflow and outflow for an arbitrary multi-level device whose
energy levels are described by a Hamiltonian matrix [H] and whose coupling

to the source and drain contacts is described by self-energy matrices
[Z1(E)] and [Z5(E)] respectively.

My purpose in this Chapter is essentially to carry out a generalized version of this treatment
applicable to an arbitrary multi-level device (Fig.9.1.2) whose energy levels and coupling are
described by matrices rather than ordinary numbers:

e — [H] Hamiltonian matrix

T2 — [T12] Broadening matrices, T3, =i [21,2 —21,2+]

In Chapter 8 we have seen that connecting a device to a reservoir broadens its energy leves
and it is convenient to talk in terms of a continuous independent energy variable E, rather
than a discrete set of eigenstates. The density matrix can be written in the form (see
Eq.(8.2.13))
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[Pl = T (dE/2m) [G"(E)] (91.23)

where in equilibrium [G”(E)]eq = [AE)]fg(E—-p) (9.1.2b)

Just as the spectral function [A] represents the matrix version of the density of states per unit

energy, the correlation function [ G"] is the matrix version of the dectron density per unit
energy.

Non-equilibrium density matrix: In Section 9.1 the first result we will prove is that when
the device is connected to two contacts with two distinct Fermi functions f(E) and f,(E), the
density matrix is given by Eq.(9.1.1) with (dropping the argument ‘E’ for clarity)

[G" = [Adfy + [Ajlf, (9.1.3)
where Ay = GGY  and A, = GIL,G' (9.1.4)
G = [El-H-3-3,] 7} (9.1.5)

suggesting that a fraction [ A7] of the spectral function remains in equilibrium with the
source Fermi function f; while another fraction [ A,] remains in equilibrium with the drain
Fermi function f,. We will show that these two partial spectral functions indeed add up to
give thetotal spectral function [A] that we discussed in Chapter 8 (see EQ.(8.2.7))

[A] = i[G-G'] = [A] + [A]] (9.1.6)
Current: Next we will show that the current |; at terminal ‘i’ can be written in the form
+ ~
= () | @
with T; = Trace[[;A]f; — Trace[l;G"] (9.1.7)

representing a dimensionless current per unit energy. This leads to the picture shown in
Fig.9.1.2 which can be viewed as the quantum version of our e ementary picture from Chapter
one (Fig.9.1.1).
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280 Quantum Transport: Atom to Transistor

One-level model: In Chapter one, we went through an example with just one leve so that the
electron density and current could all be calculated from a rate equation with a smple model
for broadening. | then indicated that in general we need a matrix version of this “scalar
model” and that is what the rest of the book is about (see Fig.1.6.5).

Itis ingtructive to check that the full “matrix model” we have stated above (and will
derivein this Chapter) reducesto our old results (Egs.(1.6.4) — (1.6.6)) when we specidize to
aone-level system so that all the matrices reduce to pure numbers.

From Eq.(9.1.5), GE) = (E-e+(ir'/2) 7t

r I
From Eq.(9.1.4), A,(E 1 As(E 2
omEGO.L4 1® = ez B i
From Eq.(9.1.6) A(E) = r

(E—¢) 2+ (T'/12)?

From Eq.(9.1.3), G"E) = A(E)(%fl(E)+%f2(E)J

which can be compared with Eq.(1.6.4). Smilarly, from Eqgs.(9.7) the current a the two
terminasare given by (cf. Egs.(1.6.5a,b)):

+oo0
I = % JeER [A(E)fl(E)—Gn(E)]

— 00

I = % FdE I, [AE)2(E)-G"(E)]

— 00

Transmission: EQ.(9.7) can be combined with (9.3) and (9.6) to write

i = -l = T(E)(fL(E)-T2(E)
where T(E) = Trace[l3Ay] = Trace[lHAq] (9.1.8)

The current | in the externa circuit is given by

| = (/) JETE) (1(E)-f,(E)) (9.1.9)

— 0
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The quantity T(E) appearing in the current equation (Eq.(9.1.9)) is called the transmission
function which tells us the rate a which electrons transmit from the source to the drain
contacts by propagating through the device. Knowing the device Hamiltonian [H] and its
coupling to the contacts described by the self-energy matrices %4 5, we can caculate the

current either from Eq.(9.1.7) or from EQ.(9.1.9). This procedure can be used to andyze any
device as long as the evolution of electrons through the device is coherent. Let me explain
what that means.

The propagation of electrons is said to be coherent, if it does not suffer phase-
breaking scattering processes that cause a change in the state of an external object. For
example, if the electron got deflected from arigid (that is unchangeable) defect in the lattice,
the propagation would still be considered coherent. The effect could be incorporated through
an appropriate defect potential in the Hamiltonian [H] and we could still caculate the current
from Fig.9.1.2. But, if the electron transferred some energy to the atomic lattice causing it to
start vibrating that would congtitute a phase-breaking process and the effect cannot be
included in [H]. How it can be included is the subject of Chapter 10.

Incident 21
- Device —>
Ll1 Si1 4— E
E| Lead 2
Lead 1 |:sll 512:| = - I"lZ
21 S21 5§ —» 522! !
- «—
S12 Incident

Fig. 9.1.3. The transmission formalism assumes the device to be connected via
ideal multimoded quantum wires to the contacts and the transmission function is

related to the S-matrix between these leads.

| should mention here that coherent transport is commonly treated using the transmission
formaism which starts with the assumption that the device is connected to the contacts by
two ideal leads which can be viewed as multimoded quantum wires so that one can cadculate
an Smatrix for the device (Fig.9.1.3), somewhat like a microwave waveguide. The
transmission matrix Syq (or spp) isof sizeM x N (or N x M) if lead 1 has N modes and

lead 2 has M modes and the transmission function is obtained fromitstrace: T(E) = Trace
[312315] = Trace [5213;1]. This approach is widdy used and seems quite appealing

especialy to those familiar with the concept of S-matrices in microwave waveguides.
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282 Quantum Transport: Atom to Transistor

Transmission from Green’s function: For coherent transport, one can caculate the
transmission from the Green’ s functions method, using the relation

T(E) = Trace[Gr,G*| = Trace[I,GNG'] (9.1.10)

obtained by combining Eq.(9.1.8) with (9.1.4). In Sections 9.2, 9.3 we will derive dl the
equations (Eq.(9.1.2)-(9.1.7)) stated in this Section. But for the moment let me just try to
justify the expression for the transmission (Eq.(9.1.10)) using a smple example. Consider
now asimple 1-D wire modeled with a discrete lattice (Fig.9.1.4). We wish to caculate the
transmission coefficient

TE) = (valvplt? (9.1.11)

where the ratio of velocities (v,/vy ) is included because the transmission is equd to the
ratio of the transmitted to the incident current, and the current is proportiona to the veocity

timesthe probability | |,

To calculate the transmission from the Green’s function approach, we start from the
Schrodinger equation, [El — H] {y}={0}, describing the entire infinite system and use the
same approach described in Section 8.1 to eiminate the semi-infinite leads

[El-H-%-Z]{yt = {8 > {y=[C{S (9.112)

where [G] is given by Eq.(9.1.6). Z; and X, are matrices that represent the effects of the
two leads. each has only one non-zero element (see Eq.(8.1.7a)):

1) = —tgexp(ikqd), Zo(N,N) = —tgexp(ikoa)

corresponding to the end point of the channel (1 or N) where the lead is connected. The
source term { S} is a column vector with just one non-zero element corresponding to the end
point (1) on which the electron waveisincident (see Eq.(8.1.7b)):

S1 = i2tgsinkja = i(avy/d)
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Incident wave Transmitted wave
— exp (+ ikyna) —> texp (+ ikpna)
@ G—tor\—to/\ R . 7
N
<—— rexp (-ikina) to=n"/2mea
Reflected wave Fig.9.1.4

From Eq.(9.1.12) we can write t =y(N) = G(N,1) S(1) so that from Eq.(9.1.11)

TE) = (Avi/a)(hvola) |GEN)|?

which is exactly what we get from the genera expressionin Eq.(9.1.10).

This simple example is designed to illustrate the relation between the Green's
function and transmission points of view. | believe the advantages of the Green’s function
formulation are threefold:

(1) The generdity of the derivation showsthat the basic results apply to arbitrary shaped
channels described by [H] with arbitrary shaped contacts described by [ 4], [ Z5] .
This partitioning of the channels from the contacts is very useful when dealing with
more complicated structures.

(2) The Green's function approach alows us to calculate the density matrix (hence the
electron density) as well. This can be done within the transmission formalism, but
less straightforwardly [Ref.9.3].

(3) The Green' s function approach can handle incoherent transport with phase-breaking
scattering, as we will see in Chapter 10. Phase-breaking processes can only be
included phenomenologically within the transmission formalism [Ref.9.2].

In Sections 9.2, 9.3 we will derive the Green’sfunction equations stated earlier (Egs.(9.1.2)-

(9.1.7)), discuss the relation with the transmission formalism in Section 9.4 and findly
present afew illustrative examplesin Section 9.5.
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284 Quantum Transport: Atom to Transistor

9.2. Density matrix

In this Section we will derive the results stated in Section 9.1 for the non-equilibrium
density matrix (Egs.(9.1.3)-(9.1.6)) for a channd connected to two contacts. In the next
Section we will derive the current expressions (Egs.(9.1.7)-(9.1.9)).

Channel with one contact: | would like to start by re-visiting the problem of a channel
connected to one contact and clearing up a conceptua issue, before we take on the red
problem with two contacts. In Section 8.1 we started from a Schrodinger equation for the
composite contact-channel system

E{ v } - [H ! H v } 9.2.1)
Dr+x ™ Hr+in] Pr+X

[Hg+in]  [H]
,,,,,,,,,, i

IS
S

T Wi

f ek
A \/

and showed that the scattered waves {y} and
{x} can be viewed as arising from the {(DR}
“spilling over” of the wavefunction {®R} in

the isolated contact. Using straightforward + {X}
matrix algebrawe obtained

Contact Channel
x} = Gr'{y} (922)
whee Ggr= [Elg-Hgr+in] (9.2.3)
v} = [Gl{s) (92.4)
G = [EI-H-3]™* (9.2.5)
X= 1Ggr1t (9.2.6)
{S} = t{DdR} (9.2.7)

Since there isonly one contact thisisreally an equilibrium problem and the density matrix is
obtained simply by filling up the spectral function

AE) = i[G—G+] (9.2.8)

according to the Fermi function as stated in Egs.(9.1.1), (9.1.2). What | would like to do now
is to obtain this result in a completely different way. | will assume that the source waves

{®Rr} from the contact are filled according to the Fermi function and the channd itsdlf is
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filled smply by the spilling over of these wavefunctions. | will show that the resulting density
matrix in the channd is identical to what we obtained earlier. Once we are clear about the
approach we will extend it to the real problem with two contacts.

Before we connect the contact to the device, the eectrons will occupy the contact
eigenstates o according to its Fermi function, so that we can write down the density matrix
for the contact as

pr(T.F) Z%(r)fo (B —1) g, (F")

or in matrix notation as [Pr] = 2 fo (€0 —1){0g} {0g)" (9.2.9)

Now we wish to calculate the device density matrix by calculating the response of the device
to the excitation t{®} from the contact. We can write the source term due to each contact

eigenstate a, {Sut = {00}
find the resulting device wavefunction from Eq.(9.2.8) {wa}l = Gt{dy}

and then obtain the device density matrix by adding up the individual components weighted
by the appropriate Fermi factors for the origina contact eigensate o:

2 foleo —m) {wo} {wo )"

[ dEfo(E-1)Y, 8(E—eq) W} {wal*

o

= JdETO(E-1) G 7| Y, 3(E—tx) {00} {00}

JdE fo(E-1) G TAR T G (9.2.10)

making use of the expression for the spectral function in the contact (Eq.(8.2.3):
ARE) = 2 3(E—eq) {00} {0} (92.11)
o

From Eq.(9.2.6), I = i[Z-X7] = tARgt" (9.2.12)
so that from EQ.(9.2.10) we can write
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[G"] = [GI'G'lfo(E—p) (9.2.13)

where we have made use of EQ.(9.2.2). To show that this is the same as our earlier result
(Egs.(9.1.1), (9.1.2)), we need the following important identity:

it [6] = [B-H-3]"  ad T = i[z-3'

Then A = i[G—G+] - GI'G" = G'IG (9.2.14)
.. .. + -1 -1 + .

Thisis shown by writing (G) - G = 2-¥" = —il

then pre-multiplying with G and post-multiplying with G* to obtain
G- G" = -iGI'G" - A = GIG'
Alternatively if we pre-multiply with and post-multiply with G we obtain

G- G" = -iG'Iré - A = G'IG

| have used this smple one contact problem to illustrate the important physica
principle that the different elgenstates are uncorrelated and so we should calculate their
contributions to the density matrix independently and then add them up.

Thisisalittle bit like Young's two-dit experiment. If

the two dits are illuminated coherently then the I/
intensity on the screen will show an interference \'
>

pattern. But if the dits are illuminated incoherently

then the intensity on the screen is smply the sum of

the intensties we would get from each dit >
independently. Each eigenstate o islikea “slit” that \
“illuminates’ the device and the important point is

that the “dlits’ have no phase coherence.

ZmmauouoOwm

That iswhy we calculate the device density matrix for each ‘slit” o independently and add
them up.
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Now that we have been through this exercise once, it is convenient to devise the
following rule for dealing with the contact and channel wavefunctions

[ORH @R} = | (dE/2n) fo(E-p) [AR(E)] (92.159)
v = J(dE/2n G E) (9.2.15b)

reflecting the fact that the eectrons in the contact are distributed according to the Fermi
function fp(E-H) in a continuous distribution of eigenstates described by the spectral
function, AR (E). Thisrule can be used to shorten the algebra considerably. For example, to
evaluate the density matrix we first write down the result for asingle eigenstae

v} = Gt{og} > {yHy}" = Gr{eg}{er} 'G"

and then apply Eq.(9.2.15) toobtain ~ [G"] = [GtART G'1fo(E—p)
which reduces to EQ.(9.2.13) making use of EQ.(9.2.12).

Channel with two contacts: Now we are ready to tackle the actua problem with two
contacts. We assume that before connecting to the channel, the eectrons in the source and

the drain contact have wavefunctions {®,}, {®,} obeying the Schrodinger equations for
the isolated contacts:

[EI-Hy+in]{®} = {0} and [EI-Hy+in]{®,} = {0} (9.2.16)

where [H4], [H>] are the Hamiltonians for contacts 1 and 2 respectively and we have added

asmall positive infinitesmal times an identity matrix, [n] =0" [I] , to introduce dissipation
as before. When we couple the device to the contacts as shown in Fig.9.2.1, these electronic
states from the contacts “spill over” giving rise to a wavefunction {y} inside the device

which in turn excites scattered waves {1} and { >} in the source and drain respectively.
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[Hy+in] [H] [Hz+in]
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The overal wavefunction will satisfy the composite Schrodinger equation for the composite
contact 1 - device- contact 2 system which we can write in three blocks (cf. Eq.(9.2.1)):

contact 1 device contact 2

contact 1

El-H;+im -1' 0 ®1 + 1 0
device -7 El-H - 15 i\ = 30 (9.2.17)
contact 2 0 — 15" ElI-Hy+in @y + %2 0

where [H] is the channel Hamiltonian. Using straightforward matrix algebra we obtain from
thefirst and last equations

{xa} = Gi{y} and {x2} = Gyti{y} (9.2.18)

whee  Gy= [El-H;+in] =  and Gp= [El-H,+in]™  (9.219)

are the Green's functions for the isolated reservoirs. Using Eq.(9.2.18) to diminate{y1}

{2} from the middle equation in Egs.(9.2.2) we obtain

where 1= T Gl T1+ and 20 = 1o GZ T2+ (9221)

are the self-energy matrices that we discussed in Chapter 8, The corresponding broadening
matrices (Eq.(9.1.1)) are given by

In=mn Al T]_+ and I, = 15 A2 ’52+ (9222)
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where Aj =i [Gl—GI] and A, =i [GZ—GE] are the spectral functions for the isolated

contacts 1 and 2 respectively. Also,

{sS} = 1 {0} + 1,{®5} (9.2.23)

is the sum of the source terms t1®; (from the source) and t,®, (from the drain) as shown in
Fig.9.2.2.

Fig.9.2.2. Channel excited by

1P, (from the source) and To®P> Tq {‘1)1} — T2 {(I)Z}
(from the drain). The channel
response is decribed by
EQ.(9.1.20) and it in turn {Xl} {XZ}
generates {x1} .{x2} in the [H+Zl+22]

contacts (see EQ.(9.1.18)).
To evauate the density matrix, we define the channel Green’ s function
G = [El-H-3-3,] ¢ (9.2.24)

and use it to express the channd wavefunction in terms of the source terms from
Eq.(9.2.20):

{v} = G{s} > {y}{y}" = G{s}{s}'G" (9.2.25)
Note that the cross terms in the source
SS+ = Tl(I)]_(DI TI + 12(1)2(1)515
+ qu)lq)ETE + TZ(I)Z(I)ITI

are zero since ®; and @, are the wavefunc Cross-terms = 0 d.to the bhannel) in the
source and drain contacts which are physicaly digoint and unconnected. The direct terms
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are evauated using the basic principle (see Eq.(9.2.15)) that we formulated earlier with the
one-contact problem:

O, 07 = | (dE/2m) f1(E) AL(E) (9.2.268)

,5 = | (dE/2r)fo(E) A(E) (9.2.26b)
to write down the density matrix from {y} {y}* = G{S}{s/"G*

p = JeEzy {[eumdct]h + [GrA,%G"]f ]
Making use of Eq.(9.2.22) we can ssimplify this expression to write

c" = Gcy¥"Gt (9.2.27)

and |2V = [Ofy + [2)f2 (9.2.28)

noting that [p] = J(dE/Zn) [G"] as defined earlier in Eq.(9.1.2). Just as G" is obtained

[y} fylt, =" is obtained from {S}{S}*. One could thus view Eq.(9.2.27) as a rdlation

between the “electron density” in the device created by the source term {S} representing
the spill-over of electrons from the contacts.

Partial spectral function: Substituting Eq.(9.2.27) into Eq.(9.2.26) we can write

[G"] = [AdfL + [A2lf2 (9.2.29)

where Al = GFlG+ and AZ = GrzG+

Comparing this with the equilibrium result (see Eq.(9.1.2)): [G"] = [A] fp, it seems
natural to think of the total spectral function [A(E)] as consisting of two parts: [ A1(E)]
arising from the spill-over (or propagation) of states in the left contact and [ A,(E)] arising
from the spill-over of states in the right contact. The former is filled according to the left
Fermi function f{(E) while the latter is filled according to the right Fermi function f,(E).
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To show that the two partia spectraindeed add up to give the correct total spectral function:
A = A+ A,, wenote from Eq.(9.2.14) that since the self energy X has two parts X, and

¥, coming fromtwo contacts, A = G[[}+I%]G" = A;+A, asstated in Eq.(8.7).

Exclusion principle ? An important conceptual point before we move on. Our approach is to
use the Schrodinger equation to calculate the evolution of a specific eigenstate @, from one
of the contacts and then superpose the results from distinct eigenstates to obtain the basic
rule stated in EQ.(9.2.15) or EQ.(9.2.26). It may appear that by superposing al these
individua fluxes we are ignoring the Pauli exclusion principle. Wouldn't the presence of
electrons evolving out of one eigenstate block the flux evolving out of another eigenstate?
The answer is no, as long as the evolution of the electrons is coherent. This is easiest to
prove in the time domain, by considering two electrons that originate in distinct elgenstates

{®,} and {®5,}. Initidly there is no question of one blocking the other since they are

orthogonal: {®;}" {®,} = 0. Atlater timestheir wavefunctions can be written as

{vi)} = exp[-iHt/A]{®}
and  {yo(t)} = exp[-iHt/n]{®;}

if both states evolve coherently according to the Schrodinger equation: iz d{w}/dt = [H] {w}
It is straightforward to show that the overlap between any two states does not change as a

result of this evolution: {y;(t)}" {wo(t)} = {®;}" {®,}. Hence wavefunctions
originating from orthogona states remain orthogonal at al times and never “Pauli block”
each other. Note, however, that this argument cannot be used when phase-breaking processes
(briefly explained in the introduction to this Chapter) are involved since the evolution of
electrons cannot be described by a one-particle Schrodinger equation.
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9.3. Inflow / Outflow

Now that we have derived the results for the non-equilibrium density matrix (see
Egs.(9.1.3)-(9.1.6)), let us discuss the current flow at the terminas (Egs.(9.1.7)-(9.1.9)). As
before let us start with the “one-contact” problem.

Channel with one contact: Consider again the problem of a channel connected to one
contact described by

N R RN = AN

() 1:+ H R+t |1’] O] EETPERTRRY

e —
Sy wa llj

Y P | —

Lt gy
——
s
I

{®R + y} for clarity. How can we evaluate Contact Channel

+
which isthe same as Eq.(9.2.1) with {®} = {X}

the current flowing between the channel and the contact?
Just aswedid in Section 5.4 (when discussing the velocity of a band eectron), we need to
look at the time-dependent version of this equation

T A A

and obtain an expression for the time rate of change in the probability density inside the

channel which is given by Trace yy'] = Trace y"y] = y 'y (note that yhy is just a
number and so it does not matter if we take the trace or not):

Trace |y td - D thy
_ % ty = | . | 9.3.1)
i

Noting that {®} ={®R + %}, we can divide this net current, | conceptualy into an inflow,
proportional to the “incident” wave {®g}, and an outflow proportiona to the “scattered”

wave {x}:
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Trace [qf’r dg - PRT Y Trace [x+r+\|1 -yt x]
I . - . 9.3.2)
14 14
Inflow Outflow

Making use of Eq.(9.2.4) and (9.2.7) we can write the inflow as

Inflow = Trace[S+G+S—S+GS]/ih = Trace[SS*A]/h

sincei [G—G']= [A]. To obtain the total inflow we need to sum the inflow due to each
contact eigenstate o al of which as we have seen is taken care of by the replacement (see
Eq.(9.2.15))

dE
DROR" = o fo(E—1) Ar(E)

Since S= 1 @R, thisleadsto

dE dE

SS' = | —fo(E-p) 1ART" = | =fo(E-p)[T]
21 2n
s0 that the inflow term becomes
Inflow = % (;—Efo(E—u) Trace[TA] (9.3.39)
i

Similarly we make use of Egs.(9.2.2) and (9.2.12) to write the outflow term as
Outflow = Trace [\f% GRty - l|I+TGRT+l|I] lih = Trace [W+ F] Ih
On summing over al the eigenstates yy* = J dE G"/2r, so that

Outflow = % Jg—: Trace[TG"] (9.3.30)
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It is easy to see that the inflow and outflow are equal a equilibrium, since G" = Af (see
Eq.(9.1.2)).

Channel with two contacts: Now we are ready to cdculate the inflow and outflow for the
channd with two contacts. We consider one of the interfaces, say the one with the source
contact, and write the inflow as (cf. EQ.(9.3.2))

. Trace [yt @ —@ftfy|  Trace[xdtiy— vt
L= in in
Inflow Ouitflow

Source Channel Drain

Making use of the relations v = GS(S, G defined in Egs.(9.2.23) and (9.2.24)) and

1S} =19 {®,}, wecanwrite

Inflow = Trace|S'G's, - S{GS|/in = Trace|SiS{A|/n

since S=S;+S, and S{S, =S5S; = 0.
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Next we sum theinflow due to each contact eigenstate o dl of which is taken care
of by the replacement (see Eq.(9.2.26))

[op{@l} = [ (dE/2n)f(E)[AL(E)]

leadingto  {SP{S]} = [ @1 P ']
= [z mATIhE) = ] ey M HE)
s that Inflow = % [ (dE/27) () Trace[TyA] (9.3.44)
Similarly we make use of Egs.(9.2.18) and (9.2.22) to write the outflow term as
Outflow = Trace [qﬁrl Gity-v'y Glrirw] lih = Trace [W+ Fl] It
On summing over al the eigenstates {y}{y'} = J (dE/2m) [G"], so that

Outflow = (U#) | (dE/2n) Trace[r,G")| (9.3.4b)

The net current |; a terminal ‘i’ is given by the difference between the inflow and the
outflow (multiplied by the charge‘ —q' of an electron) as stated in Eq.(9.1.7)

= Cam ] (@2 TE)

with 1, = Trace[[[A]f, — Trace[l“iG”] (9.3.5)

and illustrated in Fig.9.1.2.
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9.4. Transmission

In the last Section we have obtained expressions for the current at each of the contacts
which can be expressed as the difference between an inflow and an outflow. In this Section
we will express the current in adightly different form that gives a different perspective to the
problem of current flow and helps establish a connection with the transmission formalism
widely used in the literature. We start by combining Eq.(9.1.7) with Egs. (9.1.3) and (9.1.6)
to write

i = T(E) [f(E)-f2(E)] where Tp(E) = Trace[[3A;]
and 1, = Ty(E)[f2(E)-f1(E)] where To(E) = Trace[lLAq]

We expect the currents at the two terminals to be equal and opposite and this is ensured if
Trace [T7 Ay] = Trace [T A4]. To show that they are indeed egual, we make use of
Eq.(9.2.14) to show that

Trace[ T A] = Trace [T} GI'G"] = Trace[TG'T G] = Trace [TA4]

Subtracting Trace] I Aq] from both sides we obtain the desired result that Trace [T Ao] =
Trace[T, Aq], noting that T =17+ T, and A= A+ A,). Thisallows us to write the current
as (noting that 2172 = h)

| = (@) JETE) [(E)-TH(E) (2.4.)

— 0

where T(E)= Trace[T}A,] = Trace[THA ]
= Trace[[GT, G| = Trace[r, GI1 G'| (9.4.2)

is cdled the transmission function. Physically we can view the current in Eq.(9.4.1) as the
difference between two counterpropagating fluxes, one from the source to the drain and the
other from the drain to the source as sketched in Fig.9.4.1. One could view the device as a
“semipermeable membrane” that separates two reservoirs of electrons (source and drain)
and the transmission function T(E) as a measure of the permeability of this membrane to
electrons with energy E. We will show that the same function T(E) will govern both fluxes
at least aslong as transport is coherent.
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1 (S—=D) = T(E)fy(E) (b) Flux of electrons from the
drain to the source (f;=0)

—>

Device C§<_ -
f "
g Device |_12
Source Drain @

Source Drain

I(D—=S) = T(E)f,y(E)

M1 =
>

(a) Flux of electrons from the

source to the drain (fp =0)

Fig.9.4.1. The net current through the device (Eq.(9.2)) can be viewed as the
difference between two counterpropagating fluxes from electrons, (a) one from
the source to the drain and (b) the other from the drain to the source.

Transmission formalism: In the transmission formalism (sometimes referred to as the
Landauer approach) the device is assumed to be connected to the contacts by two uniform
leads which can be viewed as quantum wires with multiple modes or subbands (see Chapter
5) having well-defined E-k relationships as sketched in Fig.9.4.1. Thisallows usto define an
S-matrix for the device analogous to a microwave waveguide where the element t,,, of the t-
matrix tells us the amplitude for an electron incident in mode ‘m’ in lead 1 to transmit to a
mode ‘n’ in lead 2. It can then be shown that the current is given by Eq.(9.1.1) with the
transmission function given by

TE) = 2 |tm|’ = Trace|tt"] (9.4.3)
m n

This viewpoint, which is very popular, has the advantage of being based on reatively
elementary concepts and also alows one to calculate the transmission function by solving a
scattering problem. In the next section we will show with smple examples that this approach

yields the same result as that obtained from T = Trace [T, GI; G'] applied to devices with
uniform leads
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Mo

Incident t
—> —>
I <«—
= — '
t' NN
Incident

Fig.9.4.1. In the transmission formalism, the device is assumed to be connected
to the contacts by two uniform leads which can be viewed as quantum wires with
multiple subbands (see Chapter 5) having well-defined E-k relationships as
sketched above. This allows us to define an S-matrix for the device analogous to

a microwave waveguide.

Landauer formula: Landauer pioneered the use of the scattering theory of transport as a
conceptual framework for clarifying the meaning of eectrica conductance and stressed its
fundamental connection to the transmission function: “Conductance is transmission”. This
basic relation can be seen starting from Eq.(9.4.1) (making use of Eq.(9.1.1))

—+ oo
| = (/M) JdET(E) [fo(E—ny)-To(E—-up)]

— oo
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and noting that the current is zero a equilibrium since u; = py. A smal bias voltage V

changes each of the functions T, p; and p, and the resulting current can be written to first
order as (0 denotes asmall change)

| = (a/h) | dEST(E) [fo(E—tty)~fo(E—1y)]

— 0

+ (a/h) f dE T(E) 8 [fo(E—u1)—fo(E—12)]

— o0

Thefirst term is zero and the second can be written as

| =~ (g®V/h) rdET(E) (= fo(E)/9E) g,

— o0

so that the conductanceis given by
+ oo .
G = (@°/M)To where Ty = | dE T(E) Fr(E-p) (9.4.4)

and Fr isthethermal broadening function discussed in Chapter 8, which is peaked sharply
around E = p with a width proportional to kgT (see Fig.7.3.4). The conductance is thus
proportional to the transmission function averaged over an energy range of a few kgT
around the equilibrium electrochemical potential |, just as the quantum capacitance is
proportional to the averaged density of states (cf. Eq.(7.3.8)).

The maximum vaue of the transmission function (and hence the conductance) is
obtained if each of the M subbands or modesin one lead transmits perfectly to the other lead

(see Fig.9.4.2). The matrix [tt*] then isadiagonal matrix of size (MxM) with 1’salong the
diagonal, so that the transmission is equal to M. This suggests that the maximum
transmission is equal to the number of modes ‘M’ in the leads. But what happens if the
deviceis narrower than the lead and hasonly ‘N’ modes, N <M ?
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‘M’ modes ‘N’ modes

[
S
3
2
2

It can be argued that such a structure could not have a transmission any greater than a
structure with the leads the same size as the device

‘N’ modes ‘N’ modes ‘N’ modes

W

since in ether case the eectrons have to transmit through the narrow device region
(assuming that the device is not so short as to alow direct tunneling). Since this latter
structure has a maximum transmission of ‘N’ that must be true of the first structure as wdl
and detailed cal culations do indeed show this to be the case. In genera we can expect that the
maximum transmission is equal to the number of modes in the narrowest segment. Earlier in
Chapter 6, we had argued that the maximum conductance of a wire with ‘N’ modes is equa

to (q2 /h) N based on the maximum current it could possibly carry.

Buttiker equations:. Conductance measurenments are often performed using a four probe
structure (Fig.9.4.2) and their interpretation in small structures was initialy unclear, till
Buttiker came up with an elegant idea [9.1]. He suggested that the Landauer formula

G = (@®/MT - | = @h)T [uy-uyl

be extended to structures with multiple terminals by writing the current |; at the ith terminal
as

o= @n X T [wi-u] (9.4.5)
j
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where 'T'ij is the average transmission from termina ‘j° to ‘i’. We know the

electrochemical potentials 1 at the current terminals (1 and 2) , but we do not know them &
the voltage terminals which float to asuitable potential so as to make the current zero. How
do we caculate the currents from EQ.(9.4.5) since we do not know dl the potentials? The
point isthat of the eight variables (four potentials and four currents), if we know any four,
we can caculate the other four with smple matrix agebra Actudly, there are six
independent variables. We can always set one of the potentials to zero, since only potential
differences giverise to currents. Also, Kirchhoff’s law requires al the currents to add up to
zero, so that knowing any three currents we can figure out the fourth. So it is convenient to
set the potentia at one termina (say #2) equa to zero and write EqQ.(9.4.5) in the form of a
(3x3) matrix equation.

Iy Tio+Tiz+Tia —Ti3 —T1a My
q ~ ~ ~ ~ ~

I3 = h -Ta1 T3+ Ta+Tzy T U3

4 -Tn —Taz  Tag+Tap+Ty3| Mg

Fig.9.4.2. Conductance
measurements are
commonly carried out in a
four-probe configuration
that can be analyzed

using the Buttiker

equations.

Knowing p4,l3=0,I4=0, we can cdculate 1,u3,us and hence the four-probe
conductance

Gfour—probe = (L3—Ha)/dly

We can visudize the Buittiker equations with a simple circuit modedl if the transmission
coefficients are reciprocal, that is, if 'T'ij :'T'ji. These equations are then identicad to
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Kirchhoff’s law applied to a network of conductors Gij e ﬁj = fji connecting each pair of
contacts ‘i’ and ‘j’ (see Fig.9.4.3).

Fig.9.4.3. The u
. . ] ERFSPITE
Buttiker equations jﬁiﬁéﬁﬁ— 3 ,,5‘2;’34, H4 ‘ e

can be vcisualized in
|| .f.-’.f.-’.f.-’é;-“.f.-’.f.-’.f.-’.f. .
network, if the ul [ gt ]

terms of a conductor S, A,
.-'.-f.-'.-f.-'.-Gf/; i MZ

o ‘
transmission L PR
between terminals is T T T
p".-f.-".-f.-".-f.-".-f.-".-f.-".l'@j'[/ Pttt

I’eCIproca| . foo S

But this picture cannot be used if the transmission coefficients are non-reciprocal: ﬁ j fji’

as they are in Hall effect measurements where a magnetic field is present and some of the
most notable applications of the Buttiker equations, Eq.(9.4.4), are to the interpretation of
such measurements.

Buttiker probes. We have mentioned earlier that the scattering theory of transport can only
be used if the electrons transmit coherently through the device so that an S-matrix can be
defined. But floating probes effectively extract electrons from the device and reinject them
after phase randomization, thus effectively acting as phase-breaking scatterers. This is a
seminal observation due to Buttiker which provides a simple phenomenol ogical technique for
including the effects of phase-breaking processes in the calculation of current. We simply
connect one or more purely conceptua floating probes to the device and then caculate the
net current using the Buttiker equations, which can be applied to any number of terminals.

We could even use the genera current equation (see Eq.(9.1.1)), rather than the low
bias conductance relation) extended to include multiple floating probes:

= @) |dELE) (9.4.6)

— 0

where T;(E) = X, T;(E)[fi(E)-f;(E)] (9.4.7)
j
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One could then adjust the potential (1; to make the current & each energy equal to zero:

Tj(E) = 0. In principle this could result in different values for y; a different energies.

Alternatively, we could requireasingle valuefor i ; at all energies which is adjusted to meke
the total current at dl energies equa to zero J dE Tj (E) = 0. One could then have pogtive

values of Tj (E) a certain energies balanced by negative values a other energies making the

total come out zero, indicating a flow of electrons from one energy to another due to the
scattering processes that the "probe” is expected to smulate. This makes the detailed
implementation more complicated since different energy channels get coupled together.

The transmission coefficients a a given energy are usually caculated from the S-
matrix for the composite device including the conceptual probes:

Tij = Trace[s;j(E) s (E)]. (94.8)

But we could just as well combine this phenomenological approach with our Green's
function method using separate self-energy matrices [ Z;] to represent different floating
probes and then use the expression

Tj(E) = Trace[[;GIG"] (9.4.9)

to evaduate the transmission. This expression can be derived using the same procedure
described earlier for two-termina structures. The current a terminal ‘i’ is given by the
difference between the inflow and outflow:

li(E)= (/) Trace ([G(E)] ([AE)]i~[G"(E)]))

; ; _ Tt n_ ~tf.

Making use of the relations A—Z GIG and G —z GIiG™ fj
j j

(cf. Eq. (9.2.14)) (cf. Eq.(9.2.27))
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wecanwrite  1;(E)= (L/h) X, Trace[l; GI\G'] (f; - ;)
q

s0 that the current can be written as

i(E)= @n) Y, Ty (f—f)) (9.4.10)
j

in terms of the transmission function defined above in EQ.(9.4.9).

Sumrule: A very useful result in the scattering theory of transport is the requirement that
the sum of the rows or columns of the transmission matrix equals the number of modes:

DT o= 2T o= M, (9.4.11)
j j

where M; isthe number of modesin lead ‘i’. One important consegquence of thissum rule is
that for atwo-terminal structure Ty, = Toq, even in a magnetic field, since with a (2x2) T

matrix

{Tll T12

_ J we have Tll + le =M 1= Tll + T21 —> le = T21
Tor T

Note that a smilar argument would not work with more than two terminals. For example,
with a three termina structure we could show that Ty + Ty3= Tpq + Ta1, but we could not
prove that TlZ = sz_ or that Tl3 = T31'

The Green’s function-based expressions for the transmission (see EQ.(9.3.7)) aso
yieldasimilar sumrule:

ZT” = ZT“ = Trace[FiA] (9412)
j j

Thisis shown by noting that
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DTy = ZTrace[l“iGl“jG+] = Trace[l“iGl“G+] = Trace[T; Al
j j

where we have made use of Eq.(9.2.14) in the last step. Similarly,

2T = ZTrace[FGFiG+] = Trace[l‘iG+FG] = Trace[T} A]
j j

The quantity Trace [T A] thus plays the same role that the number of modes M; playsin the
scattering theory of transport. Interestingly, while M; isan integer, Trace [I; A] can take on
any non-integer value. For example, if the device were areally small one having just one leved
with E = €, communicating with multiple reservoirsthen

r .
LA = ' with r=>T,
' (E—¢)?+(I/2)? ~ !

which has the shape of a Lorentzian if the broadening is energy-independent. Clearly this
can have any fractional vaue.
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9.5. Examples

9.5.1. An analytical example: To see that the Green’s function formalism gives the same
answer as the scattering theory of transport it is instructive to go through a smple example
where the results are easily worked out on paper. Consider for example, a linear conductor
with arepulsive potentia U(z) = U 8(2)

at z=0. The coefficients‘r’ and ‘t p[ikz]
are obtained by requiring that the rexp[-ikz] «<———
wavefunction be continuous
z=0
az=0:
W, o - W, =0 = t-(+r) =0 (9.5.19)

and that the derivative be discontinuous by

dw] [d\lf] 2mU : 2mUpt  (9.5.1b)
" dz = T2 — ik[t-(1-1n]=""5>
[dz sot Ldzl,_o 72 W] 20 ik [t—(1-1)] 2

Egs(95.1ab) aresolvedtoyidd ~ t= 1V  To|tP=
iAv—Ug

Finite difference method: Let us now re-do this problem using a discrete lattice with points
spaced by ‘&, the central cell having an extra potential (U /a) for the delta function.

exp (+ ikna)
> — p t exp (+ ikna)

r exp (- ikna) €——

: :_to::_t(_'): :—to( ‘/\ ( ) : ‘/\
Ec+2tg Ec+2tyg Ec+2ige——7z >

+(Up/a)
n=-3 -2 -1 0 +1 +2 +3

to=h?/2mea’

We can carry out a discrete lattice version of the calculation described above, starting from
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Eyo= (Ec+2to+(Uo/@)wo — towg — towyg (9.5.2)
and then writing yo= 1+ 1 =t

v = texp[+ikal
v_1= exp[-ika] + rexp[+ika]

so that V1= Woexp[+ikal
y_1= -—2isinlka] + wqexp[+ika] (9.5.3)

Substituting back into Eq.(9.5.2), we have
(E-Ec—2tg—[Ug/al+2tg exp[+ika])yg = 2itgsinka
Making use of the dispersion relation
E= E;+2tg(l-coska) — #nv(E)= 2atgsinka (9.5.4)
thisissimplifiedto (- [Ug/a]+2itgsin[ka])yy = 2itgsinka
i v

that i = — 955
> WO ihv — UO ( )

Hence the transmission is given by

2 _ h?V(E)?

(9.5.6)
hzv(E)2 + U02

TE) = [t|% = |wo

Green’s function method: Finadly let us do this problem using the Green's function
formulation presented in this Chapter. We treat just one point as the ‘device’ with a (1x1)
Hamiltonian given by

[H]= Ec+2tg+(Up/a)
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while the effects of the two semi-infinite leads (one on each side) are represented by (1x1)
self-energy matrices as discussed in Chapter 8:

[Z1(E)]= -toexp(ika)  and [Zp(E)]= —tgexp(ika)
where ‘ka isrelated to the energy ‘E’ by the dispersion relation (see Eq.(9.5.4)), so that

[Fl,Z(E)] = | [21’2 —212] = 2to sinka= #v/a

Since dl matrices are (1x1) in size, it is easy to write down the Green’ s function:

G= [El-H-3;-3,] ¢
= [E-E¢—2tg+2tg exp(ika)—(Ug/a)] -

Using the dispersion relation to simplify as before
G = [i2tgsinka—(Ug/a)] ™ = al(ihv-Upg)
so that the transmission is given by

h2v(E)?
hzv(E)2 + UO2

T(E)= Trace|GI,G| =

in agreement with the earlier result.
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9.5.2. Numerical example: The real power of the Green’s function method, of course lies
not in smple problems like this, but in its ability to handle complex problems without the
need for any additional formulation or setting up. Given a Hamiltonian [H] and self-energy
matrices X4(E) and X,(E), the procedure is mechanica: Egs.(9.1.1) and (9.1.2) can be
applied blindly to evduate the transmission. Of course, complicated contacts can require
some extra effort to evaluate the appropriate self-energy matrices, but it is a one-time effort.
Besides, as we have mentioned earlier, one can make a reasonable guess based on
Egs.(8.3.12) and (8.3.14) without a detailed calculation — a procedure that can be justified
physically by arguing that one never knows the precise shape of the contacts anyway. The
examples we discuss below are dl based on one-dimensiona leads for which the self-
energy iswritten down easily.

[24]

a. Ballistic
device

b. Tunneling

device
c. Resonant
tunneling
device
| [ g
z/a
1 16 19
26 29

Fig.9.5.1. Three device examples: (a) Ballistic device, (b) Tunneling
device and (c) Resonant tunneling device. Barrier regions denoted by

BT have a conduction band edge 0.4 eV higher.

We use a one-dimensional discrete lattice with a = 0.3 nm to modd each of the
following devices which are assumed to be single-moded in the transverse (x- and y-)
directions (Fig.9.5.1). The barrier regionsindicated as EF have aconduction band that is
0.4 eV higher than the rest. We assume that the effective mass (mg= 0.25m) is the same
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everywhere. Fig.9.5.2 shows the (non self-consistent) equilibrium band diagran and
transmission functions T(E) calculated numericaly for each of these devices from the
Hamiltonian matrix [H] and the self-energy matrices % »(E).

. . 08p < - < -t

L (a) Ballistic device

o7l ‘ [ S e R
06b- o ]
W OBl ! LOBL
loalo oo f Hoal oo
ol ;%,o.s rrrrrrrrrrrrrrrrrrrrrrrrrrrr
o2 : 5
aé """"""""""""""""" EOZ ———————————————————————
[V | A — M Yo

0 : o

N e R oal i
07 T T ; : i

z(nm)--> 025 02 7 0.8 1
%ansmissbn >

T A - (b)Tunneling device

07| o -

(Y] R R EEEEEEEE, R !
ANOBE- o e : .

i : : : A

204

oal AU 3
025 5 16 15
z(nm)--->
08 (c) Resonant tunneling
06l L device
A ‘ f 3 .
: ‘ "
204 : 04
% . (]
2 : %03
802 802
2 : i
w .
o 3
020 5I 15 1'5 0 0.2 04 % 08 1
z(nm)--> ’ Transmission >

Fig.9.5.2. Equilibrium band diagram and transmission function

for each of the devices in Fig.9.5.1.
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For the ballistic device the transmission is zero for energies below the band-edge E.
and increases to one above the band-edge. For the tunneling device, the transmission
increases from zero to one, though more slowly. The transmission for aresonant tunneling

Fig. 9.5.3.

device, on the other hand, shows a very different behavior with two sharp resonances that
can be understood by noting that the two barriers create a“box” with discrete energy levels
(see Chapter 1, Section 1.1). The transmission from left to right peaks whenever the energy
matches one of these levels. It is possible to obtain the same results by matching
wavefunctions and derivatives across different sections, but the process quickly gets
cumbersome. Arbitrary potentia profiles, however, are easily included in the Hamiltonian
[H] and the transmission is then calculated readily from the Green’s function formalism:

T(E) = Trace [ [3GILG™].
In caculating the transmission through devices with sharp resonances (like the
resonant tunneling device) it is often convenient to include a Buttiker probe (see Section 9.4)

The reason is that it is easy to miss very sharp resonances in a numerica calculation if the
energy grid is not fine enough. A Buttiker probe ssmulates the role of phase-breaking

BT —L K3 l—i}"' 240]

Fig. 9.5.4. || |

Sl Sl dd
i Clatadd
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processes thereby broadening the resonance. The effective transmission is caculated by
solving the Buttiker equations (see Eq.(9.4.5)) as explained in the last Section. In this case
the transmission between different terminals is reciproca so that we can cdculae the
effective transmission from a simple resistor network (see Fig. 9.4.3) adapted to three
terminals.

Noting that the conductance is proportiona to the transmission we can write the
effective transmission using the elementary law of addition for conductors in series and in

parald:

T13(E) T3(E) 957)

T (E) = Tio(E _ 3
ot (%) 2®) + Ti3(E) + To3(E)

Fig.9.5.5 shows the effective transmission for a resonant tunneling device with one Buttiker
probe attached to the center of the device. Compared to the earlier result without a probe, the
resonances are broadened somewhat, especially the sharpest one.

Buttiker probe
|723(25, 25)=—i(0.25 eV)—‘

-->

[£4] e
] &=l |

[T T I

1 16 19 32 35 50 | |

26 29 z/a _OIZC 02 'Iorg'nsmisgi‘gn --->0'8 I

Fig.9.5.5. Effective transmission function for a resonant tunneling
device including a Buttiker probe located at lattice site # 25 at the
center of the device to simulate the effect of phase-breaking
processes phenomenologically. Dotted curve shows result from
Fig.9.4.2c without a Buttiker probe.

Current (1) — Voltage (V) characteristics: Eq.(9.1.9) can be used to caculate the I-V
characteristics of any coherent device, provided we know how the applied voltage drops
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across the device. Thisis not important if we are only interested in the low bias conductance
(or “linear response”), but can be of paramount importance in determining the shape of the
full current-voltage characteristics as discussed in Section 1.4.

Ho,U, 29, Zp, g2
— p Egs(8.1),(8.3)-(8.5)
— | Eq.(8.7) or (8.8)

peUJ

“Poisson” Equation

Fig. 9.5.6.

In general, for quantitatively correct results, it is important to solve for the potential profile
self-consistently. Just like the equilibrium problem (see Fig.7.2.1), we should include a

self-consistently determined potential U in the total Hamiltonian H=Hq+ U ([8p]).

This potential U represents the average potential that an electron feels due to the
change dp in the electron density, or more generaly the density matrix. Thefirst stepin this
process isto calculate the electron density from the diagonal elements of the density matrix.
This electron density can then be used in the Poisson equation to calculate the potential
which is then included in the Hamiltonian to recalculate the electron density and so on till
the process converges as sketched above. A full self-consistent calculation like this can be
time-consuming (we will describe a simple one in Section 11.4) and so it is common to
assume a “reasonable’ potential profile. What is a reasonable profile?

Thebasic principle is straightforward. If the channel were insulating (low quantum
capacitance, see Eq.(7.3.8)), the potentia profile would be given by the Laplace potential
U (7), obtained by solving the Laplace equation. But if it were metalic (large quantum
capacitance), the profile would be given by the “neutral potential” Uy (F) obtained from
the transport equation assuming perfect space charge neutrality everywhere. The correct
potential profileisintermediate between these extremes. In regions of low density of states
the quantum capacitance is small and the potential profile will tend to follow U (F) while in
regions with high density of states the quantum capacitance islarge and the potential profile
will tend to follow U (). The common practice for choosing a “reasonable profile” is to

assume that the potentia follows U (F) (that needed to maintain charge neutraity) at the
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ends which should be regions of high density of states, while in the central channel region
the profile is assumed to follow the Laplace potential U (T).

Fig.9.5.7 shows the |-V characteristics for (@) the balistic device, (b) the tunneling
device and (¢) the resonant tunneling device cdculated assuming that the potential drops
linearly across the central unshaded region in Fig.9.5.1. This assumed potential profile gives
reasonable qualitative features, but it is easy to check that the results can change quantitatively
if we choose different profiles. We will tak about this further in Section 11.4 when we
discuss the factors that influence the ON current of a nanotransistor.
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Fig.9.5.7. Current (1) versus voltage (V) characteristics of the three devices
shown in Fig.9.5.2 calculated assuming the linear potential profile shown.
The left panel shows the assumed band diagram at a bias of 0.5 V.
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Exercises

E.9.1. Use aone-dimensional discrete lattice with a= 0.3 nm to modd each of the devices

shown in Fig.9.3.1 which are assumed to be single-moded in the transverse (x- and y-
directions). Assume that the effective mass (m. = 0.25m) is the same everywhere. The
barrier regionsindicated as EEX3  have a conduction band that is 0.4 €V higher than the
rest.

(a) Set up an energy grid over the range -.2 eV < E < .8 €V and plot the transmission
probability as afunction of energy. Compare with Fig.9.3.2.

(b) Plot the transmission probability as a function of energy for the resonant tunneling
device using a Buttiker probe asindicated in Fig.9.3.3.

E.9.2. (a) Calculate the current (1) — voltage (V) characteristicsin the bias range of 0 <V <
1V. assuming that the applied bias drops across the device following the profile shown in
Fig.9.4.1. Assume the equilibrium Fermi energy to be E;f=0.1eV and the chemica
potentials in the two contacts under biasto be uy =E; +qV/2 and pup, =E; —qV /2. The
energy integration needs to be carried out only over therange 1 + 4kgT <E < u, —4kgT.
Use an energy grid with AE =0.2kgT.

(b) Cdculate the electron density n(x) per unit length assuming that the applied bias of
0.5V drops across the tunneling device following the profile shown in Fig.9.4.1.

E.9.3. Transfer Hamiltonian: Starting from the expression for the transmission in

Eq.(9.3.2), T(E) = Trace[[3GILG']

/\
T1 TZ
Aq v Ao Fig. E.9.3

Source Channel Drain

and making use of the expressions for the broadening matricesin Eq.(9.1.22) show that

T(E) = Trace[A;MA,M™]
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where A1 and A, arethe spectral functionsin the two contacts and the matrix element M is

given by M = 11G1o.

This form is similar to the version often seen in connection with the transfer Hamiltonian
formalism (see for example, Eq.(2.3.5) on p.69 of C.J. Chen, Introduction to Scanning
Tunneling Microscopy, Oxford (1993)). In the transfer Hamiltonian formalism the matrix
element M is assumed to be unaffected by the coupling to the contacts which is assumed to
be smdl, But in the present formulation ‘G’ and hence ‘M’ is affected by the contacts
through the self-energy due to the contacts.

E.9.4. 2-D cross-section: In the examples of Sections 9.3, 9.4 we have assumed that the
device is one-dimensional. The 2-D cross-section can be included in a smple way, if we
assume periodic boundary conditions and assume that al the transverse modes are
decoupled as we did when calculating the capacitance in Chapter 6. We could then smply
sum our 1-D result over al the transverse modes represented by the two-dimensional vector

k towrite (e = 7%k?/2my):

2nh

—00

9 v T e
| = 2 rdET(E)[fO(E+£R—ul)—fo(E+eR—u2)]
k

The transmission function depends only on the longitudinal energy E while the Fermi
functions are determined by the total energy E + €. The summation over k can be carried

out analytically to write (S: cross-sectional area)

Ig _ n—(ll_j:dET(E)[fZD(E—Hl)_fZD(E_“Z)]

This means that the current in adevice with a 2-D cross-section is obtained using the same
procedure that we used for a 1-D device, provided we use the k-summed Fermi function
fop(see Eq.(6.2.12) in place of the usual Fermi function. Repeat Prob.9.2 using fop (see
Eq.(6.2.12)) instead of the Fermi function fy to account for a device with a 2-D cross-

section. The current should now be expressed in A / m? and the electron density should be
expressed in/ m°.
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E.9.5. 1-D cross-section:

L,

mOXITCOW
Z—>»X0

In analyzing Field Effect Transistors, we often have a 1-D cross-section (y-direction) to sum
over, while the transmission has to be calculated from a 2-D problem in the z-x plane.
Assuming periodic boundary conditions in the y-direction show that the 1-dimensiona k-
sum can be done analytically to obtain

L n_(ll rdET(E)[le(E—Ml)—flo(E—HZ)]

where the 1-D k-summed Fermi function is given by

mckgT E
fin(E) = [ 2C th )3—1/2 (‘ﬁ}

) 1 1
th =
Wi S_1/2( N '[1+exp (=% x 3+1/2(X)

where 3 _1/2(X) was defined in Eq.(7.2.23).
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