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8/ Level Broadening

8.1. Open systems

8.2. Local density of states
8.3. Lifetime

8.4. Irreversibility

In the introductory Chapter, we saw that current flow typically involves achannel connected to
two contacts which are out of equilibrium with each other, having two distinct electrochemica
potentials. One contact keeps filling up the channel while the other keeps emptying it causing
a net current to flow from one contact to the other. In the next Chapter we will take up a
guantum treatment of this problem. My purpose in this Chapter is to set the stage by
introducing a few key concepts using a smpler example: a channel connected to just one
contact as shown below.

vl

Fig.8.1. A channel
connected to one

contact. The set of
discrete levels

broaden into a

continuous density

Contact Channel

of states as shown.

Sincethere is only one contact, the channe ssimply comes to equilibrium with it and there is
no current flow under steady state conditions. As such this problem does not involve the
additional complexities associated with multiple contacts and non-equilibrium conditions.
This alows us to concentrate on a different physics that arises simply from connecting the
channd with alarge contact: The set of discrete levels broadens into a continuous density of
states as shown on the right.

In the introductory chapter | introduced this broadening without any formal
justification pointing out the need to include it in order to get the correct vaue for the
conductance. My objective in this Chapter is to provide a quantum mechanicd treatment
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242 Quantum Transport: Atom to Transistor

whereby the broadening will arise naturally aong with the “uncertainty” relation y= #/1
connecting it to the escape rate 1/t for an eectron from the channe into the contact.
Moreover, we will see that in generd the broadening is not just a number y as we assumed,
but a matrix [T"] of the same size as the Hamiltonian matrix [H], which can be energy
dependent (unlike [H]).

| will start in Section 8.1 from a Schrodinger equation describing the entire channel +
contact system (see Fig.8.2):

E{g} ) t' :|R Hg} (81)

and show that the contact (denoted by ‘R’ for reservoir) can be eliminated to obtain an
equation for the channel only that has the form

E{v; = [H+Z{y} + {§ (8.2)

This is the central result that we will use as a starting point in Chapter 8 when we discuss
current flow between two contacts. Here { S} is a “source” term representing the excitation
of the channel by electron waves from the contact, while the self-energy matrix [ X] could be
viewed as a modification of the Hamiltonian [H] so as to incorporate the “boundary
conditions’, somewhat the same way that we added a couple of terms to [H] to account for
the periodic boundary conditions (see Eq.(1.3.3)).

Fig.8.2. A channel described [HR] [H]
by [H] is connected through

[ t] to a contact described by {(I)} [’C]

[HR]. We can write an equation

Wi

for the channel alone that has
the form shown in Eq.(8.2). Contact Channel

However, there are two factors that make [ =] much more than a minor modification to
[H]. Firstly it is energy dependent, which requires a change in our viewpoint from previous
chapters where we viewed the system as having resonant energies given by the eigenvalues of
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Chapter 8/ Level Broadening 243

[H]. Since [x] is energy dependent, we would need to find each of the eigenvalues ¢
iteratively, so that it isan eigenvalue of [H + Z(E =¢,)]. It ismore convenient to think of the
energy E as an independent variable and look for the response of the device to incident
electrons with different energies and that is the viewpoint we will adopt from hereon.

The second distinguishing feature of the self-energy x is that, unlike [H] it is NOT
Hermitian and so the eigenvalues of H+ = are complex. Indeed the anti-Hermitian part of X

r= i[2—2+] (8.3)

can be viewed as the matrix verson of the broadening y introduced earlier for a one-level
device and in Section 8.2 we will relateit to the broadened density of states in the channel. In
Section 8.3, we will relate the broadening to the finite lifetime of the eectronic dates,
reflecting the fact that an electron introduced into a state does not stay there forever, but lesks
away into the contact.

Y ou might wonder how we managed to obtain a non-Hermitian matrix [H + X ] out of
the Hermitian matrix in Eq.(8.1). Actudly we do not redly start from a Hermitian matrix: we
add ainfinitesmal quantity i 0" to the reservoir Hamiltonian Hr making it a“tiny bit” non-
Hermitian. Thislittle infinitesmal for the reservoir gives rise to a finite broadening T" for the
channe whose magnitude is independent of the precise vaue of 0'. But this seemingly
innocuous step merits amore careful discussion, for it essentially converts a reversible system
into anirreversible one. Aswe will explain in Section 8.4, it also raises deeper questions about
how large a system needs to be in order to function as a reservoir that leads to irreversible
behavior.

In this chapter we are using the concept of self-energy to account for the contacts (like
the source and drain) to the channel. However, the concept of self-energy is far more genera
and can be used to describe dl kinds of interactions (reversible and irreversible) with the
surroundings and not just the contacts. Indeed this is one of the seminal concepts of many-
body physicsthat is commonly used to describe complicated interactions, compared to which
our problem of contacts is a relatively trivid one that could be treated with more eementary
methods, though not quite so “elegantly”. My objective, however, is not so much to provide
an elegant treatment of a simple problem, as to introduce a deep and profound concept in a
smple context. In Chapter 9 we will extend this concept to describe less trivia “contacts”,
like the interaction with photons and phonons.
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244 Quantum Transport: Atom to Transistor

8.1. Open systems
Our objective in this Section isto obtain an equation of the form (see Eq.(8.2))

Efy} = [H+Z]{y} + {S) (8.11)

describing an open system, unlike the equation E {y} = [H] {w} that we have been using for
closed systems so far. The basic ideais easy to see using a simple toy example.

Toy example: Consider a semi-infinitel-D wire described by a one-band effective mass
Hamiltonian of the form shown in Fig.8.1.1. Let ustreat the first point of the wire labeled ‘ 0’
asour channel and the rest of thewirelabeled ‘'n’, n < 0 as the contact.

Fig.8.1.1. Toy example: A FENTANL 7 C
semi-infinite wire described by -3 -2 -1 | 0 H
a one-band effective mass —1p —tg ﬁ‘l
Hamiltonian. The first point ‘0’ B b ( ) ( ) ( ) ( ) N
is treated as the channel and 4_a_> Ec+2to E
the rest as the contact. i £

If the ‘channel” were decoupled from the * contact’ it would be described by the equation:

Ey = (Ec+2to)y
—
Hy

Once we coupleit to the ‘ contact’ this equation is modified to
Ey = (Ec+2tg)y — tod_; (8.1.2
where the contact wavefunctions @, satisfy an infinite series of equations (n < 0)

Eq)n = —tg®yq + (EC+2tO)q)n - to®Pny1 (813)

Supriyo Datta, Purdue University



Chapter 8/ Level Broadening 245

Now, since this infinite set of equations al have the same structure we can use the basic
principle of bandstructure calculation (see Eq.(4.2.4)) to write the solutions in the form of
plane waves, labeled by ‘k’. Assuming the solution to have the form of an incident wave from
the left and areflected wave we can write

®, = Bexp(+ikna) + Cexp(-ikna) (8.14)
where E = E.+ 2tp(1-coska) (8.1.5)
Using Eq.(8.1.4) we can write y = & = B + C

and @®_; = Bexp(-ika) + Cexp(+ika)
so that ®_; = wyexp(+ika) + B(exp(-ika)—exp(+ika))
Substituting back into Eq.(8.1.1) we obtain

Ey = (Ec+2tg)y - tgexp(+ika)y + tgB(exp(+ika)—exp(-ika)) (8.1.6)
Hy Sy S

which has exactly the form we are looking for with

L = —tgexp(+ika) (8.1.79)
and S = itg2Bsin(ka) (8.1.7b)

Note that the self-energy X is non-Hermitian and is independent of the amplitudes B,C of
the contact wavefunction. It represents the fact that the channel wavefunction can leak out
into the contact. The source term S on the other hand represents the excitation of the channel
by the contact and is proportional to B. Let us how go onto a genera treatment with an
arbitrary channel connected to an arbitrary contact.

General formulation: Consider first a channel with no electrons and is disconnected from
the contacts as shown in Fig.8.1.2a. The electrons in the contact have wavefunctions {®R}
that obey the Schrodinger equations for the isolated contact

[ElIR—-Hr+in]{®r} = {0} (8.1.89)
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246 Quantum Transport: Atom to Transistor

where[ Hg] isthe Hamiltonian for the contact and [ | g] is an identity matrix of the same size
as [HR]. | have added a small positive infinitesmal times an identity matrix, [n]=0"[IR]

whose significance we will discuss later in Section 8.4.

Fig. 8.1.2. (a) Channel contains no
electrons and is disconnected from

the contact where the electrons

occupy the states described by {®r}.

Contact Channel

Fig.8.1.2.b. On connecting to the [HR+iT]] [H]

contact, the contact wavefunctions

{®R} “spill over” into the device {q)R}
giving rise to a wavefunction {y} in
the channel which in turn generates + {X} -;lyy;ﬂ

a scattered wave {x} in the contact. Contact

S
S

i T | \|I
'.-"f{.-%:}.-":

R B
)

Channel

Now if we couple the channel to the contact as shown in Fig.8.1.2b, the contact wavefunctions
will “spill over” giving rise to awavefunction {y} inside the device which in turn will excite
scattered waves {x}. The overal wavefunction will satisfy the composite Schrodinger

equation for the composite contact — device system which we can write in two blocks:

contact device
contact (g pin gt {(DR"'X} _ {0} (8.1.8b)
device -1 El-H v 0

where [H] is the device Hamiltonian. Note that the different quantities appearing in this
equation are not numbers (except for the energy E). They are matrices of different sizes
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Contact Hamiltonian [ HR], Identity matrix: (R x R)
Channel Hamiltonian [H], Identity matrix [1]: (d x d)

Coupling Hamiltonian [ t]: (Rx d),[T7]: (dX R)

or column vectors: Contact wavefunction{ ®r} ,{ x}: (Rx 1)
Devicewavefunction { y}: (d x 1)

Eqg. (8.1.8b) can be written out explicitly astwo separate matrix equations
[Elr—Hr+in]{x} - [*"[{v} = {0}
[El-H{v; - [d{x} = [t{®r}

where we have made use of EQ.(8.1.8a). We can use straightforward matrix algebrato express
{x} intermsof {y} from thefirst equation

I = Gr7 v
where Gr= [Elg-Hg+in] > (8.1.9)

and substitute into the second equation to obtain

[El-H-3]{y} = S} (8.1.10)

where Y= tGgtad S = 1dg (8.1.11)

Eqg.(8.1.10) has exactly the form of the result (see EQq.(8.1.1)) that we are trying to prove,
while Eq.(8.1.11) gives us a forma expression that we can use to evduate ¥ and S. It is
apparent from EQq.(8.1.9) that the quantity G represents a property of the isolated contact
since it only involves the contact Hamiltonian Hg. It is called the Green’s function for the
isolated contact whose physical significance we will discussin the next Section.

Evaluation of £ and S: Looking at EQ.(8.1.11), it is not clear how we could evauate it for
gpecific examples, since the matrix Gg is of sze (R x R), which is typicaly huge since the
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248 Quantum Transport: Atom to Transistor

gze of the reservoir (R) is often infinite. However, we note that although the matrix [ t] is
formally of size (d x R), in “real space” it only couples the ‘r" surface elements of the
reservoir next to the channel. So we could truncate it to a (d x r) matrix and write

T = 1 OR T

(8.1.12aq)
(dxd) (dxr) (rxr) (rxd)

S = OR
and (8.1.12b)
(dx1) (dxr) (rx)
where the surface Green’sfunction gg representsa (r x r) subset of the full Green's function
Gr involving just the ‘'r’ points at the surface, and { ¢} represents a (r x 1) subset of the
contact wavefunction { ®r}. For example for the toy example that we discussed at the
beginning of this section, we can show that

T = —-tg ¢r = —i2Bsnka (8.1.13q)
and gr = —(1/tg)exp(ika) (8.1.13b)

which when substituted into Egs.(8.1.12a,b)) yields the same results that we obtained earlier
(cf. Egs.(8.1.7ab)). The expression for ¢r is obtained by noting that it is equal to the
wavefunction &_q that we would have in the contact (at the point that is connected to the
channdl) if it were decoupled from the channel. This decoupling would impose the boundary
condition that dq =0, making C = - B, and the corresponding ®_; isequal to (—i 2B sin ka)
as stated above. The expression for g takes a little more agebra to work out which we will
delegate to exercise E.8.1 at the end of the Chapter.
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Another way to evaluate ¥ and S is to work in the eigenstate representation of the contact,
0 that the contact Hamiltonian Hg isdiagonal and the Green’sfunction Gg, is easily written

down in terms of the eigenvalues ¢, of Hy:

1
E—g+i0"
1
[Gr(BE)] = 0 — 8.1.14
A E—ep+i0" (8114

In this representation, the coupling matrix [ T] cannot be truncated to a smaler size and we
have to evaluate an infinite summation over the eigenstates of the reservoir:

[Tn] [Tn]Jr
E) = —_— 8.1.15
HE) zn" E—g,+i0" ( )
SE) = X [tl{®r), (8.1.15b)

n

However, this summation can often be carried out anayticaly after converting to a
summation. As an example, Exercise E.8.2 shows how we can obtain our old results
(Egs.(8.1.7a,b)) for the toy problem starting from EQ.(8.1.15).

Before moving on let me briefly summarize what we have accomplished. A channel
described by a Hamiltonian [H] of size (dxd) is coupled to a contact described by a (RxR)
matrix [Hgr], where R istypically much larger than d (R >> d). We have shown that the effect
of the reservoir on the device can be described through a self-energy matrix x(E) of size
(dxd) and asource term S(E) of size (d x 1).
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250 Quantum Transport: Atom to Transistor

8.2. Local density of states

We have just seen that a channel coupled to a contact can be described by a modified
Schrodinger equation of the form E{w} = [H+Z]{w} + {S} where {S} represents
the excitation from the contact and the self-energy X represents the modification of the
channel by the coupling. Unlike [H], [H + X] has complex eigenvalues and the imaginary
part of the eigenvalues (a) broadens the density of states and (b) gives the eilgenstates a finite
lifetime. In this Section we will talk about the first effect and explain how we can calculate the
dengity of statesin an open system. In the next section we will talk about the second effect.

Consider the composite system consisting of the channel and the contact. Earlier in
Chapter 5 we agreed that a system with a set of eigenvalues ¢, has a density of states given

by

DE)= Y, 8(E-gy) (8.2.1)

o

How can different energy levels have different weights as implied in the broadened lineshape
on theright of Fig.8.1? Doesn't Eq.(8.2.1) tell us that each energy leve givesrise to a delta
function whose weight is one? The problem is that the density of states in Eq.(8.2.1) does not
take into account the spatial distribution of the states. If we want to know the local density of
states in the channel we need to weight each state by the fraction of its squared wavefunction
that residesin the channel denoted by ‘d’:

DAE)= Y, |0(d)|® S(E-¢g)

o

For example, suppose the device with one energy levd € were decoupled from the reservoir
with adense set of energy levels {eg }. Thetotal density of states would then be given by

DE)= X.8(E-g,)= &(E—e)+ 2, 3(E—¢,)
o n
whilethe local density of states on the channel would ssimply be given by

D(AE)= X [0a(d)|® 8(E-g,) = 3(E-2)

o
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since the reservoir states have wavefunctions that have no amplitude in the channel at al. Once
we couple the channel to the reservoir, thingswill not be so clear cut any more. There will be
one leve with its wavefunction largely on the channedl, but there will be many other
neighboring states with their wavefunctions residing partially on the channel. If we look at the
locad density of states in the channel we see a series of energy levels with varying heights
reflecting the fraction of the squared wavefunction residing in the channel.

HOQ_I

€ gy SRR S
() -
w

d(E—¢)

Y. 3 (E-¢R)

R

Fig.8.1.1. A channel with a single energy level € coupled to a reservoir with a
dense set of energy levels {€,}. The local density of states on the channel shows

a single sharp level, before being coupled to the reservoir. But on being
coupled, it shows a series of levels of varying heights reflecting the fraction of
their squared wavefunction that reside in the channel.

In general we can define a local density of states (LDOS) D(r;E)that weights each
level by the square of its wavefunction at the location T:

DFE) = 3 |0a(M)|’ SE-¢y) (82.2)

which can be viewed as the diagona eement (divided by 2r) of amore general concept called
the spectral function, [A(E)]:

A(FFiE) = 21, 0o (F) S(E—gy) 0y (F) (8.2.3)

just astheelectron density ~ n(F) =Y, |06 (F) | 2 fo (e, —1L) (8.2.4)
o
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252 Quantum Transport: Atom to Transistor

can be viewed as the diagonal element of the density matrix:
p(F.F)=2 0P folea -1 0o (7)  (8:25)
o

We have argued earlier in Section 3.3 that Eq.(8.2.5) is just the rea space representation of
the matrix relation:

[p]=To ([H]-n[]) (8.2.6)
Using the same argument we could write the spectral function as
[A(E)]=2r 8 (E[l]-[H]) (8.2.7)

and view Eq.(8.2.3) asitsreal space representation. If we use the eigenstates of H as our basis

eg 0 0 -
then [H] isdiagonal : [H] = g 32 80
3
5(E-g1) O 0
and sois[A(E)] : [A(E)]=2n 0 &(E-¢9) 0 625

0 §(E—e3) -

Eq.(8.2.3) transforms this matrix to areal space representation. In principle we could write the
gpectral function in any representation and its diagonal elements will tell us the LDOS (times
2m) a energy E in that representation, just as the diagonal elements of the density matrix tell

usthe loca eectron dengity in that representation. The total number of electrons, N is given
by the sum of dl the diagonal elements of [p] or the trace of [p] which is independent of

representation:

N = Trace[p] = 3 foleq 1)
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Similarly, the total density of states given by the trace of the spectral function [A] divided by
2n is independent of representation and is readily written down from the egenstate
representation:

D(E) = %Trace[A(E)] = Y 8(E-gy) (8.2.9)

Sum rule: An important point to note is that if we look at the total number of states at any
point integrated over al energy, the answer is one. If we start with a device having one levd
and coupleit to reservoir, it will broaden into aseries of levels (Fig.8.1.1) of varying strengths
representing the fact that wavefunction for each leve contributes to different extents to the
device. But if we add up the strengths of dl the levels the answer is the same as that of the
original level. What the device loses from its one level dueto hybridization, it gains back from
the other levels so that the broadened leve in the device can accommodate exactly the same
number of electrons that the one discrete level could accommodate beforeit got coupled to the
reservoir. This sum rule could be stated as follows:

TodE DF:E) = 1

— 00

TodE D(f:E)

— 00

and can be proved by noting that

| e [A@))/2r

— 00

isbasicaly the diagona element of the matrix

evaluated in the red space representation. It is easy to see from EQ.(8.1.8) that in the
eigenstate representation

1 O 0
= o 1 0 . e
J' —[AE)] = since JdEB(E—e):l
2n O 0 1

— 0

The point is that this quantity will look the same in any representation since the identity
matrix remains unchanged by a change in basis.
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Green’s function: In evauating the spectral function it is convenient to make use of the
identity

2n
mS(E-g,) = |— L
moEE) [(E—sa)2+1’]2]n%0+
E—g,+i0" E—g,—i0" (82.10a)
to write 2n5(El-H) = i([(E+iO+)I—H]_l—[(E—iO+)I—H] _1] (8.2.10b)

where 0" denotes a positive infinitesima (whose physical significance we will discuss a
length in the Section 8.4). Egs.(8.2.10b) would be a smple extension of (8.2.10a) if the
argument (El - H) were an ordinary number. But since (El - H) is a matrix, Eq.(8.2.10b) may
seem like a big jump from Eq.(8.2.10a). However, we can justify it by going to a
representation that diagonaizes [H], so that both sides of Eq.(8.2.10b) are diagona matrices
and the equality of each diagona eement is ensured by EQ.(8.2.10a). We can thus establish
the matrix equdity, Eq.(8.2.10b) in the eigenstate representation, which should ensure its
validity in any other representation.
Using Egs.(8.2.7) and (8.2.10b) we can write

A(E) =i [G(E) - G*(E)] (8.2.11)

where the retarded Green's function is defined as
s~ _1
G(E) = [(E+|O )l —H] (8.2.123)
and the advanced Green's function is defined as
+ At -1
G'(E) = [(E—|o )I—H] (8.2.12h)

In the next section we will see how the Green’ s function (and hence the spectral function) can
be evaluated for open systems.
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Density matrix: Starting from [p]=fo ([H]-u[1]) (same as Eq.(8.2.6))
we can write [p] = T dE fo(E—p) 8([El —H])
_°°+
= [ EtoE-wia@) (8.213)
s

—00

which makes good sense if we note that [A(E)] / 2 is the matrix version of the density of
states D(E), the same way that the density matrix [p] isthe matrix version of the total number

of electrons, N. We could view EQ.(8.2.10) as the matrix verson of the common sense
relation

+ oo
N = JdEfo(E-p)D(E)

which simply states that the number of electrons is obtained by multiplying the number of
states D(E) dE by the probability fo(E) that they are occupied and adding up the
contributions from al energies.

Why should we want to use Eq.(8.2.13) rather than EQ.(8.2.6)? In previous chapters we
have evaluated the density matrix using Eq.(8.2.6) and it may not be clear why we might want
to use Eq.(8.2.10) sinceit involves an extra integration over energy. Indeed if we are dealing
with the entire system described by a matrix [H] then there is no reason to do so. But if we
are dealing with an open system described by a matrix of the form (see Fig.8.2)

_ H T
H =
T+ HR

then EQ.(8.2.6) requires us to dea with the entire matrix which could be huge compared to
[H] since the reservoir matrix [HR|] istypically huge— that is why we cal it a reservoir! The
gpectral function appearing in Eq.(8.2.10) or the Green's function too is technicaly just as

large
K _ |:A AdR :| ) C _ |:G GdR :|
ArRd ARr Grd Grr
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but we only care about the top (dxd) subsection of this matrix and the great advantage of the
Green's function approach is that this subsection of [G(E)], and hence [A(E)], can be
calculated without the need to deal with the full matrix. This is what we will show next, where
we will encounter the same self-energy matrix X that we encountered in the last Section.

Self-energy matrix - all over again: The overdl Green’'s function can be written from
Eq.(8.2.12a) as

- + _1
s _ [G GdR:| _ [(E+|0)I—H —1 6214

Grd Grr — (E+i0")I —Hg

The power of the Green’ s function method comes from the fact that we can evauate the (dxd)
subsection [G] that we care about exactly from the relation

G = [(E+i0N)I-H-XE)]* (8.2.15)
where X(EQ isthe self-energy matrix givenin Eq.(8.1.11).

Eq.(8.2.15) follows from EQ.(8.2.14) using straightforward matrix algebra. The basic
result we make use of isthe following.

[a b| [a B]?
If = (8.2.16a)
c d  [c D
ten [A Blla b] [I 0
C Djlc d [0 1
sothat Aa + Bc = | and Ca + Dc = 0 — ¢ = -D!cCa
PR
Hence a = (A ~ BD C) (8.2.16D)

Comparing EQ.(8.2.16a) with Eq.(8.2.14) and making the obvious replacements we obtain
from EQ.(8.2.16b)
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. -1 -1
G= [(E+|O+)I—H —TGRT+] where GRr = [(E+io+)|_|-|R

which yields the result stated above in EQ.(8.2.15).

Eq.(8.2.16b) is a well-known result that is often used to find the inverse of large
matrices by partitioning theminto smaller ones. Typically in such cases we are interested in
finding al the component matrices a, b, c and d and they are al approximately equa insize. In
our problem, however, the matrices a, A are much smaller than the matrices d, D and we only
want to find ‘a’. Eq.(8.2.15) dlows us to evduate [G] by inverting a matrix of size (dxd)
rather than the full (d+R) x (d+R) matrix in EQ.(8.2.14). This can be a mgor practical
advantage since R istypically much larger than d. But the idea of describing the effect of the
surroundings on a device through a self-energy function [X] is not just a convenient
numerical tool. It represents a mgjor conceptual step and we will try to convey some of the
implications in the next Section. For the moment, let us look a a couple of examples, one
analytical and one numerical.

Analytical example: Consider auniform infinite 1-D wire modeled with a one-band effective
mass Hamiltonian of the form

<T>

_tO —to
—O~OC=~O—O— — -

to shZIZmCa2

Since this is a uniform wire the eigenstates can be catalogued in terms of ‘k’ obeying a
dispersion relation and we can use our results from Chapter 5 to write the DOS per unit cdll
as

D(E) = alnhv(E) where v = (/%) dE/dk
Now let us obtain this same result using the Green’'s function method developed in this

section. Wereplace theinfinite 1-D wire with a single unit cell and add self-energy terms to
account for the two semi-infinite wires on ether side.
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The Green’ sfunction for thissingle cell isa (1x1) matrix or a number

1

S = B (Bt 2to—toeplikal - toexplikal)

which is simplified making use of the dispersion relation E = E + 2t (1-coska)
to obtain

GE) = 1 I
toexp|ika] — tgexp|[—ika] 2itgsinka

from which the DOS is obtained:

D(E) = i[G-G']/2n
= 1/2ntgsinka = a/lnhv > same as previous result

snce Av = dE/dk = 2atgsinka

Numerical example: To get a fedling for the self-energy method, it is instructive to redo the
problem of finding the equilibrium electron density in a 1-D box that we discussed in Chapter
3 (seeFig.3.3.1). We consider asimilar problem, namely, a 1-D box with a potential U(x) that
changes linearly from —0.1 eV at one end to +0.1 eV a the other end. We mode it using a
one-band Hamiltonian with alattice of 50 points spaced by a= 2A and with the effective mass
m. equal to 0.25 times the free electron mass m:

4T>

_tO _to —to

EC+ zto EC+ 2t0 EC+ 2t0
to=h%/2m.a°

We wish to evaluate the electron density n(z) in the box assuming that it isin equilibrium with
an electrochemical potentia p = E+0.25 eV and kgT =0.025€V. The electron density is
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given by the diagona eements of the density marix p which we can evduate in one of two
ways.

1. We could assume periodic boundary conditions: H(1,100) = H(100,1) = - ty and then
evduate p from Eq.(8.1.6).

2. We could add sdlf-energy terms (Egs.(8.2.14), (8.2.15)) which have non-zero values
of —tgexp[ika] only on the end points (1,1) or (100,100), evauate the Green's
function from Eq.(8.2.3)

G = [(E+i0N)I-H-%;-%,] ¢

obtain the spectral function from Eq.(8.2.11)) and then caculate the equilibrium
density matrix from EQ.(8.2.10).

Fig.8.2.3 shows that the two results agree well. Indeed some discrepancy is likely due to
errors introduced by the discreteness of the energy grid used for the integration in the last
step of method. We have used agrid having 250 pointsin theenergy range E. - 0.1eV <
E < E.+ 04eV.However, the oscillations in the first method arise from the standing
waves in a closed ring (resulting from the use of periodic boundary conditions) which are
absent in the open system modeled by the self-energy method. These oscillations in method 1
will be less pronounced for longer devices (or larger effective mass), because the energy levels
will get closer together.

As we know the effect of the self-energy is to broaden the energy leve, but its
integrated strength is unchanged because of the sum rule mentioned earlier. Consequently the
distinction between the two methods is somewhat obscured when we look & the electron
density since it involves an integration over energy. The self-energy method alows us to
investigate in detail the local density of statesin different parts of the device (see Fig.8.2.4).
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260 Quantum Transport: Atom to Transistor

Fig.8.2.3. Plot of electron density,
n(z) calculated for a 1-D wire with a
linear potential U(z) (see Fig.8.2.4)
using periodic boundary conditions
(solid line) and using the self-
energy method to enforce open
boundary conditions (x’s).
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(a) LDOS at left end of device (b) Potential U(x) (c) LDOS at right end of device
across device

Fig. 8.2.4. Local density of states (LDOS) at two ends of a 1-D wire with a linear

potential U(X) impressed across it. The corresponding electron density is shown
in Fig.8.2.3. with p = E+ 0.25 eV and kgT=0.025¢€V.
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8.3. Lifetime
In Section 8.2 we introduced the concept of Green’s function, G(E) as a convenient
way to evauate the spectral function, A(E) based on the mathematical identity:

: : -1 _ -1
2n8(El—H) = |([(E+|O+)I—H] - [E-i0")1-H] J

[A(E)] = i [G(E)] - [G" (B)] )

However, aswewill explain in this Section, the Green’s function has a physical significance
of its own as the impulse response of the Schrodinger equation and this will help us
understand the “uncertainty” relation between the broadening of alevel and the finite lifetime,
both of which result from the coupling to the reservoir. To understand the meaning of the
Green's function let us use the eigenstates of H as our basis so that the Green's function is
diagond :

;_ 0 0
E—g;+i0"
o Y 0
E—e,+i0"
[G(E)]= . (83.1)
0 0 — ..
E—83+IO

Consider the Fourier transform of G(E) defined by

GROI= | = et E (o)

which is also diagonal and looks likethis:

exp (—iegt/n) O 0
0 exp(-iest/n) O

~R _ —_| —0"t
[G ()] = 7 () e 0 0 exp (—iest/n)

(8.3.2)
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262 Quantum Transport: Atom to Transistor

It takes alittle work (involving contour integration on acomplex plane) to get from Eq.(8.3.1)
to Eq.(8.3.2). But it is quite straightforward to go the other way from EQ.(8.3.2) to Eq.(8.3.1)

+ oo
iEt/h (&R
using the inverse transform relation:  [G(E)] = .[ dt e =T [GR ()]

— 0

. +oo
%I J.dtelEt/h ﬂ(t)e—let/h e—Ot

— 0

.t oo . )
| Jdtel(E—s)t/h o Ot I T
0 E—e+i0"

| should mention that here | am not using the superscript ‘R’ to denote reservoir. | am
using it to denote ‘retarded” which refers to the fact that the function éR(t) is zero a dl
timest < 0. It is easy to see that the diagonal elements of this function satisfies the differentia
equation

9 SR
(.hE - eaJGw(t)— 5(t)

50 that we can write (m% - [H]J[éRa)]: [1] () (83.3)

suggesting the interpretation of GR (t) as the impul se response of the Schrodinger equation

(ihg - [H]J{‘P(t)} =0 (8.34)

The (n,m) element of this matrix énﬁq (t) tells us the nth component of the wavefunction if the
system is given an impulse excitation at its mth component:

S(t)

AN
N N

m n
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From this point of view it seems natural to expect that the Green’s function should be
“retarded”, since we cannot have aresponse before the impulseis applied (which is a t = 0).
Mathematically, however, this is not the only solution to Eq.(8.3.3). It is straightforward to
show that the “advanced” Green’sfunction

[éA(t)] = [GR(— t)] ' (8.3.5)

satisfies the same equation, (lh§ - [H] J [GAm1= [1] 3(t) (8.3.6)

but it is zero at dl times after t = 0. In the eigenstate representation we can write from

Egs.(8.3.2) and (8.3.5):

exp(—igt/n) 0 0
0 exp(-iggt/n) O

~ A B _| 5 +0"t
[G™ ()] = hﬁ( t) e 0 0  exp(-iegt/h)

(8.3.7)

This is actually the Fourier transform of G*(E) (once again it is easier to do the inverse
transform). The difference between the retarded and advanced Green’s function in the energy
domain

Retarded Advanced
G(E) = [(E+i0+)I—H]_1 G'(E) = (E—i0+)I—H]_1

looks very minor: The two only differ in the sign of an infinitesmally small quantity 0* - one
istempted to conclude wrongly that they differ only in some insignificant sense. In the time
domain, however, their difference ishard to miss. One is zero for t < 0 (causal) and the other
iszerofor t > 0 (non-causal). Oneisinterpreted as the response to an impulse excitation at t =
0; the other has no physical interpretation but is a mathematically valid solution of the same
equation with a different unphysical initia condition. In Fig. 8.3.1 we have sketched the
magnitude of one of the diagona elements of éa%(t) and éoﬁx(t). Note that the spectra
function is proportional to the difference between the retarded and advanced Green's functions
(seeEq.(8.1.11)) :

Ao&x(t) = i [éocl?x(t) - éoﬁx(t)]
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264 Quantum Transport: Atom to Transistor

Since both Green's functions satisfy the same differential equation, the spectral function, [a(t)]
satisfies the homogeneous differential equation without the impulse excitation :

D -
('hg - [H]J[A(t)]— [C]

and hence has no discontinuity at t = 0 unlike éR(t) and G* (t)asshownin Fig.8.3.1.

~ R ~ A ~
G 0 Gotn () | Ago®)]
exp(+0*t) exp(- 0't)
- > >
Retarded Advanced Spectral
Green's function Green's function function

Fig.8.3.1. Sketch of the magnitude of any diagonal element (in the eigenstate
representation) of the retarded and advanced Green's functions and the spectral

function in the time domain.

Physical meaning of the self-energy: We have seen in Section 8.2 that we can calculate the
device subsection of the full Green’sfunction

-1
_ G G E+i0")I-H —~
G = [ dR] _ [( +10) k (same as Eq.(8.2.2))
Grd CrR —r* (E+i0%)1 - HR
exactly from the relation G = [(E+i0")I-H-X(E)] -1 (same as EQ.(8.2.3))
where the self-energy Y(E)=1t9r(E) t* (sameasEQ.(8.2.7))
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can be calculated from a knowledge of the surface property of the reservoir (gg) and the

device-reservoir coupling (t).
Now that we have interpreted the time domain Green's function as the impulse

response of the Schrodinger equation (see Eq.(8.3.3)), we could write a similar equation for
the device subset of the Green’s function by Fourier transforming Eq.(8.2.3). This would be

straightforward if the self-energy X were independent of the energy E:

(ih% - [H] - [z]][éR(t)]: [1] &(t) (8.3.89)

If we take the energy dependence into account then the Fourier transform looks more
complicated. The product of Z(E) and G(E) when transformed becomes a convolution in time

domain.

(i;% - [H]J[éR(t)] [ at [Z-t)] [éR(t')]= [1] 3(t) (8.3.8)

To get someinsight into the physical meaning of X let usignore this “detail”. In fact,
let us make the problem real simple by considering a small device with just a single energy
levd € so that [H] and [ £] are both simple numbers rather than matrices:

ih— — & —

d R
( = EJG 0= &)

Reservoir

The solution to this equation

éR(t) - _ I% e—i (£+Z)t Ih ﬁ(t)

tells us the wavefunction in response to an impulse excitation of the devicea t = 0. we can

write
éR(t): _Le—iﬁlt/h e_ytIZhﬁ(t) (839)
(8.3.10)

where € =e+ReX and y=- 2ImX

All Rights Reserved

datta@purdue.edu




266 Quantum Transport: Atom to Transistor

Therea part of the self-energy causes a shift in the device energy level from € to €', while the
imaginary part has the effect of giving the eigenstates afinite lifetime. Thisis evident from the
squared magnitude of this wavefunction which tells us how the probability decays with time
after theinitial excitation:

1

‘ éR(t)‘ ‘2 Lo exp(—1t /)
h2

Clearly we can relate the lifetime of the state to the imaginary part of the self-energy:

1 _ vy _ _2m (8.3.11)

T h h
We can identify this as the “uncertainty” relation between lifetime and broadening if we note
that the imaginary part of the self-energy is equal to the broadening of the density of states.
To see this we note that the Fourier transform of the ssimple version of the Green’sfunction in
Eq.(8.3.9) isgiven by

G(E) = ;
E-e+iy/2
so that AB _pgy = |t 1
21 E-e+iy/l2 E-€-iy/2

v
(E-€)*+(v/2)°

showing that the LDOS on the device is broadened into a L orentzian of width vy equal to twice
the imaginary part of the self-energy. Of course, the lineshape in genera need not be
Lorentzian. We have obtained this result because in this discussion we ignored the energy
dependence of the self-energy (in the time domain one would call it the memory effect of the
reservoir) and used Eq.(8.3.8a) instead of (8.3.8b) for the purpose of clarity in this physica
discussion.

We have seen in Section 8.1 that the self-energy for a one-dimensiona contact is
diagona with two non-zero entries:
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(1Y) =-tgexp(ika)= —tqcogka)—itg sin(ka)

From Eq.(8.3.11) we could write the corresponding lifetime for thesite*1’ as

L 1 _ 2tosinka
/] /]
CONTACT
: (&
-3 -2 -1 |0 [H
C C ;\_tO: :—to: ﬁl\
EEEERENR N
4T> EC+2tO E
| L
< |

V= (2aty/h) sinka

It isinteresting to note that the velocity associated with aparticular ‘k’ inthe wireis given by

19E 19 2aty
v = —— = Z_—[2tg(l-coska)] = —=sin(ka
n ok hak[ of ) 7 (ka)
othawecanwrite L = 1 - ¥
T h a

which is intuitively satisfying since we expect the escape rate from a given cell to equa the
escape velocity divided by the size of a cell. Indeed one could use this principle to write down
the imaginary part of the self-energy approximately for more complicated geometries where
an exact calculation of the surface Green’s function may not be easy:

ImXZ(E) = #av(E)/R (83.12)
Here'R’ isalinear dimension of the unit cdl, the precise arithmetic factor depending on the
specific geometry.
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Knowing the imaginary part, one can caculate the rea part too from a generd
principle independent of the specific details. The principle is that the real and imaginary part
must be Hilbert transforms of each other (® denotes convolution)

Im =(E') 1

ReX(E) = |dE L GLE (8.3.13)

so that the self-energy can be written in the form
3E) = [ReX(E)]-i[ImZ(E)] = -ilmZX(E) ®(8(E)+é) (8.3.14)

This principle is obeyed by any function whose Fourier transform is causal (that is, the
Fourier transform is zero for t < 0). The self-energy function is causal because it is
proportional to the surface Green’s function of the reservoir (see Eq.(8.2.7)) which is causa
as we discussed earlier. To see why causal functions obey this principle, we note that

3(E) +(i/E) isthe Fourier transform of the unit step function: 9 (t). Thismeansthat any time

domain function of the form ¥ (t) f(t) has a Fourier transform that can be written as (product
in the time domain becomes a convolution in the transform domain)

i
F(E) ® (S(E) + E]

where F(E) isthe transform of f(t) and isred if f(t) isasymmetric function.
Broadening matrix: In the simple case of a one-level device we have seen that the imaginary
part of the self-energy gives us the broadening or inverse lifetime of the leve (see

Eq.(8.3.11)). More generaly, the self-energy is a matrix and one can define a broadening
matrix I"(E) equa to its anti-Hermitian component:

IE) = i[Z(E)—Z+(E)] (8.3.15)

This component of the self-energy is responsible for the broadening of the levd, while the
Hermitian component
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Sy(E) = %E(E)w*(E)

can conceptualy be viewed as a correction to the Hamiltonian [H]. Overal we could write

H+XE) = [H+Zn(E)] - @

We have often made use of the fact that we can ssimplify our description of a problem by
using the eigenstates of the Hamiltonian [H] as our basis. For open systems we would want
to use arepresentation that diagonalizes[H + Xy ] in our energy range of interest. If the same
representation also diagonalizes [T'], then the problem could be viewed simply in terms of
many one-level devicesin parallel. But in general this may not be the case. The representation
that diagonalizes[H + Z] may not diagonalize [ T"] and vice versa. We can then diagonalize
one or the other but not both and interesting new physics beyond the one-level example can
result.
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8.4. Irreversibility
One might wonder how a non-Hermitian operator X could emerge from a system
consisting of two parts each of which is described by a Hermitian operator (H and HR in

Fig.8.2)! Mathematicaly, this results from the “infintesimal” i0" (see Eq.(8.3.1)) that
converts the retarded Green’ s function (see Fig.8.3.1) from the non-decaying function on the
left to aweakly decaying function on the right:

exp(— O+t)

> : p

This is often justified mathematically as an artifice used to ensure the convergence of the
Fourier transform. However, this seemingly innocuous step essentially converts a reversible

system into an irreversible one by adding an imaginary (non-Hermitian) component i0" [I]
int an otherwise Hermitian matrix [H]. Surely something this profound cannot be the result of
aminor mathematica artifice designed to ensure convergence! It is thus reasonable to ask

what thisinfinitesmal i 0" physically represents.
To understand this, let us consider a device with a single state with € = 0, and a
reservoir that consists of numerous closely spaced energy levels: {e, ,r=12,---} as shown in

Fig.8.4.1. The point | want to make isthat the infintesimal i 0" represents the rate a which the
electron is extracted from the reservoir levels by externa devices (like a battery terminal for
instance) and the system will behave irreversibly as long as this quantity exceeds the spacing
between the energy levelsin the reservoir. Typicaly with large reservoirs, the energy levels are
extremely closaly spaced (perhaps by pico €V!) and only an infinitesma externa influence

(expressed by the infintesmal 10", whose precise vaue is unimportant) is needed to induce
irreversible behavior. But if the level spacing were larger, say meV (and this is not unlikely
with “nanostructured contacts’) then the behavior of the system will depend on the precise

valueof i 0" reflecting the actua broadening of “reservoir” levels by external influences. In
this case the contact isreally not functioning like areservoir.
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Reservoir

Fig.8.4.1. A device with a single state with € = 0 is coupled to a reservoir that

consists of numerous closely spaced energy levels: {er,rle,---}. The

infintesimal i0+represents the rate at which the electron is extracted from the
reservoir levels by external devices (like a battery terminal for instance) and the
system will behave irreversibly as long as this quantity exceeds the spacing

between the energy levels in the reservoir.

Let me explain my point a little further with a numerical example. The overal system
in Fig.8.4.1 isdescribed by alarge Hamiltonian matrix of the form

E 11 T2 13
1:1 e 0 0
tE 0 e O

13 0 0 e

We have seen that we can eliminate the reservoir degrees of freedom and describe the device
with a (1x1) “matrix” [e+ X]| where (see Eq.(8.2.4))

so that . (E_gr)2+n2 (8.4.1)
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2
~(E-&)%+n? ot (8.4.2a)

— n Z|rr| 2 S(E-g) (8.4.2b)
r

We have seen that the broadening and the inverse lifetime are related to the imaginary part of
the self-energy and can be written as (see Eq.(8.3.11))

2lmX 2n 2
_ _smz 7Z|«,-r| S(E—-¢) (8.4.39)
r

I
St

h

If the coupling elements t, are al approximately equal, then we can take it outside the
summation and simplify Eq.(8.4.3) to

== 1. 7|Tr| zr:S(E—er) = 7|rr| DRr(E) (8.4.3b)

where DR (E) is the reservoir density of states. This is a standard result, often referred to as
Fermi'sgoldenrule.

Theinverselifetimein Eq.(8.4.3) isinterpreted asthe rate at which an electron initialy
located in the device escapesinto the reservoir. But thisinterpretation is appropriate only if the
infinitesmal m appearing in Eq.(8.4.2) islarger than the spacing between the energy levels of
the reservoir. For example, if we assume that the reservoir has 2000 equally spaced energy
levels between —1 and 1 eV, then DRr(E) = 1000/ eV (since we have 2000 levels evenly
distributed over 2 V). Fig.8.4.1a shows the device LDOS calculated from

D(E) = AE) = —llmG(E) = —llm;
2n T T E-e-X(E)

using the expression for the self-energy X(E) from EQ.(8.4.2a) with each of the coupling
matrix elements T, set to .005 eV and the infinitesma 0" st to .001eV.
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(@ Dr(E) =1000/eV, (b) Dr(E)=10/eV,
T =-005eV 1,= 056V
' with
%8} reservoir 0* —.001eV
o¢h coupling - e SR 3

e A 7 coupling

i 3 s 3
DOS (/eV)=>

Fig.8.4.1. LDOS for a one-level device connected to a reservoir: (a) Dr(E)
= 1000/eV, T,= .005 eV and 0" —.001 eV. (b) DR(E) = 10/eV, T,= .05 eV

and two values of OV,

The resulting lineshape iswell described by aLorentzian

DE) = % (8.4.9)
E“+(y/2)

withawidth y given by Eq.(8.4.3b): Y = 2r[0.005eV] 2 [1000/eV] = 0.0785eV.

Now consider what happens if we choose a reservoir with states that are 100 times

less dense but with the coupling elements t, that are 10 times as strong. The corresponding

broadening vy is unchanged. But the LDOS now looks distinctly different, depending on

whether we use 0" — .05eV or 0" — .001eV (see Fig.8.4.1b). With 0" — .05eV, we have
asingle broadened line whose Fourier transform looks like a decaying exponential

—t/T irreversible
€ behavior

>t
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indicating that an electron placed in the device will escape into the reservoir with a lifetime of

1. By contrast, with 0" — .001eV, we have a line consisting of multiple spikes whose
Fourier transform looks periodic with a period T=h/AE (AE: spacing between energy
levelsin the reservoir) which is known as the recurrence time

Partially
+

exp[—O t] reversible
behavior

> ot

«— T —

indicating that an electron placed in the device will oscillate back and forth between the device

and reservoir if theinfinitesimal “ 07" is smaller than AE.

Thisisreally an old problem in physics that is not unique to quantum mechanics. For
example we know that if we turn off acar it will Sow down and lose its energy to the surface
of the road which will get heated. But if we tried to use Newton’'s law to mode this by
coupling the car to afinite number of “molecules’ on the surface of the road, we would end
up with reversible behavior. The car would dow down initialy, but after some time would gain
back al the energy from the road — a result completely at odds with our everyday experience
where the energy flows away for ever and never comes back. To include this in a theoretical
model we would either have to add a damping term to the molecules (equivalent to adding

i0%) or use asystem so large that the recurrence timeis larger than our time of simulation.
The sameistrue of electrons escaping into any “contact”. Occasionally experiments

do show “echoes’ but this happens seldom enough that people write papers when they see it.

And so to describe the observed behavior in the real world it is necessary to assume that the

reservoir states have a broadening 0% from their interaction with the surroundings that
exceeds their levd spacing, making the reservoir density of states essentially a continuous
function of energy, rather than a set of discreteimpulses. But it is important to remember that
a“nanocontact” may not function like atraditional reservoir if it has an energy leve spacing

that exceeds its broadening® 0" due to external influences.
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Exercises

E.8.1. Assume a 1-D one band effective mass modd for a1-D lead

to= 7f32/2mca2

-1
Starting from Eq.(8.1.9) GRr= [(E +i0")I-H R]
Show that Gr(0,0)=gr =—exp(ika) / tg (8.1.13b)

E.8.2. Starting from EQs.(8.1.15a), evduate the self-energy for a semi-infinite lead by
carrying out the summeation analytically after converting to an integral and compare with
Eq.(8.1.15).

E.8.3. Consider al-D wire with a potential U(x) that changes linearly from —0.1 eV at one end
to +0.1 eV at the other end and model it using a one-band Hamiltonian with a lattice of 50
points spaced by a= 2A and with the effective mass m. equa to 0.25 times the free electron
mass m:

_t a
@ OO‘tOF\—tor\ ()
oy Wy > 2
Ec+2tg E.+2tg Ect+2p
t Eh2/2m a2

Calculate the electron density n(z) in the wire assuming that it is in equilibrium with an
electrochemical potential p= E.+0.25€eV and kgT =0.025€eV, using (a) periodic boundary
conditions and (b) the self-energy method. Compare with Fig.8.2.3.

Calculate the LDOS at the two ends of the box from the self-energy method and compare
with Fig.8.2.4.
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E.8.4. Consider adevicewith asingle state with € = 0, connected to a reservoir such that the
overal system is described by a Hamiltonian [H] of the form

e 11 T2 13
11 & 0O
tE 0 e O

13 0 0 e

Calculate the LDOS in the device as afunction of the energy E using the parameters indicated
inFig.8.4.1.
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