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8 / Level Broadening

8.1. Open systems

8.2. Local density of states

8.3. Lifetime

8.4. Irreversibility

In the introductory Chapter, we saw that current flow typically involves a channel connected to

two contacts which are out of equilibrium with each other, having two distinct electrochemical

potentials. One contact keeps filling up the channel while the other keeps emptying it causing

a net current to flow from one contact to the other. In the next Chapter we will take up a

quantum treatment of this problem. My purpose in this Chapter is to set the stage by

introducing a few key concepts using a simpler example: a channel connected to just one

contact as shown below.

Since there is only one contact, the channel simply comes to equilibrium with it and there is

no current flow under steady state conditions. As such this problem does not involve the

additional complexities associated with multiple contacts and non-equilibrium conditions.

This allows us to concentrate on a different physics that arises simply from connecting the

channel with a large contact: The set of discrete levels broadens into a continuous density of

states as shown on the right.

In the introductory chapter I introduced this broadening without any formal

justification pointing out the need to include it in order to get the correct value for the

conductance. My objective in this Chapter is to provide a quantum mechanical treatment

Fig.8.1. A channel

connected to one

contact. The set of

discrete levels

broaden into a

continuous density

of states as shown.
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whereby the broadening will arise naturally along with the “uncertainty” relation   γ τ= h /

connecting it to the escape rate 1/ τ  for an electron from the channel into the contact.

Moreover, we will see that in general the broadening is not just a number γ  as we assumed,

but a matrix [ Γ ] of the same size as the Hamiltonian matrix [H], which can be energy

dependent (unlike [H]).

I will start in Section 8.1 from a Schrodinger equation describing the entire channel +

contact system (see Fig.8.2):

(8.1)

and show that the contact (denoted by ‘R’ for reservoir) can be eliminated to obtain an

equation for the channel only that has the form

E H Sψ ψ{ } = +[ ] { } + { }Σ (8.2)

This is the central result that we will use as a starting point in Chapter 8 when we discuss

current flow between two contacts. Here {S} is a “source” term representing the excitation

of the channel by electron waves from the contact, while the self-energy matrix  [ Σ] could be

viewed as a modification of the Hamiltonian [H] so as to incorporate the “boundary

conditions”, somewhat the same way that we added a couple of terms to [H] to account for

the periodic boundary conditions (see Eq.(1.3.3)).

However, there are two factors that make [ Σ] much more than a minor modification to

[H]. Firstly it is energy dependent, which requires a change in our viewpoint from previous

chapters where we viewed the system as having resonant energies given by the eigenvalues of

E
H

HR

ψ τ

τ

ψ
Φ Φ









=


















+

Φ{ } ψ{ }
HR[ ] H[ ]

ChannelContact

τ[ ]

Fig.8.2. A channel described

by [H] is connected through

[ τ ] to a contact described by

[ HR ]. We can write an equation

for  the channel alone that has

the form shown in Eq.(8.2).
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[H]. Since [ Σ] is energy dependent, we would need to find each of the eigenvalues εn

iteratively, so that it is an eigenvalue of [H + Σ( )E n= ε ]. It is more convenient to think of the

energy E as an independent variable and look for the response of the device to incident

electrons with different energies and that is the viewpoint we will adopt from hereon.

The second distinguishing feature of the self-energy Σ  is that, unlike [H] it is NOT

Hermitian and so the eigenvalues of H+ Σ  are complex. Indeed the anti-Hermitian part of Σ

Γ Σ Σ= −[ ]+i (8.3)

can be viewed as the matrix version of the broadening γ  introduced earlier for a one-level

device and in Section 8.2 we will relate it to the broadened density of states in the channel. In

Section 8.3, we will relate the broadening to the finite lifetime of the electronic states,

reflecting the fact that an electron introduced into a state does not stay there forever, but leaks

away into the contact.

You might wonder how we managed to obtain a non-Hermitian matrix [H + Σ ] out of

the Hermitian matrix in Eq.(8.1). Actually we do not really start from a Hermitian matrix: we

add a infinitesimal quantity i0+  to the reservoir Hamiltonian HR making it a “tiny bit” non-

Hermitian. This little infinitesimal for the reservoir gives rise to a finite broadening Γ  for the

channel whose magnitude is independent of the precise value of 0+ . But this seemingly

innocuous step merits a more careful discussion, for it essentially converts a reversible system

into an irreversible one. As we will explain in Section 8.4, it also raises deeper questions about

how large a system needs to be in order to function as a reservoir that leads to irreversible

behavior.

In this chapter we are using the concept of self-energy to account for the contacts (like

the source and drain) to the channel. However, the concept of self-energy is far more general

and can be used to describe all kinds of interactions (reversible and irreversible) with the

surroundings and not just the contacts. Indeed this is one of the seminal concepts of many-

body physics that is commonly used to describe complicated interactions, compared to which

our problem of contacts is a relatively trivial one that could be treated with more elementary

methods, though not quite so “elegantly”. My objective, however, is not so much to provide

an elegant treatment of a simple problem, as to introduce a deep and profound concept in a

simple context. In Chapter 9 we will extend this concept to describe less trivial “contacts”,

like the interaction with photons and phonons.
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8.1. Open systems

Our objective in this Section is to obtain an equation of the form (see Eq.(8.2))

E H Sψ ψ{ } = +[ ] { } + { }Σ (8.1.1)

describing an open system, unlike the equation E ψ{ } = [H] ψ{ } that we have been using for

closed systems so far. The basic idea is easy to see using a simple toy example.

Toy example: Consider a semi-infinite1-D wire described by a one-band effective mass

Hamiltonian of the form shown in Fig.8.1.1. Let us treat the first point of the wire labeled ‘0’

as our channel and the rest of the wire labeled ‘n’, n < 0 as the contact.

If the ‘channel’ were decoupled from the ‘contact’ it would be described by the equation:

  

E E tc

H

ψ ψ
ψ

= +( )2 01 24 34

Once we couple it to the ‘contact’ this equation is modified to

E E t tcψ ψ= + − −( )2 0 0 1Φ (8.1.2)

where the contact wavefunctions Φn satisfy an infinite series of equations (n < 0)

E t E t tn n c n nΦ Φ Φ Φ= − + + −− +0 1 0 0 12( ) (8.1.3)

Fig.8.1.1. Toy example: A

semi-infinite wire described by

a one-band effective mass

Hamiltonian. The first point ‘0’

is treated as the channel and

the rest as the contact.
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Now, since this infinite set of equations all have the same structure we can use the basic

principle of bandstructure calculation (see Eq.(4.2.4)) to write the solutions in the form of

plane waves, labeled by ‘k’. Assuming the solution to have the form of an incident wave from

the left and a reflected wave we can write

Φn B ikna C ikna= +( ) + −( )exp exp (8.1.4)

where E E t kac= + −( )2 10 cos (8.1.5)

Using Eq.(8.1.4) we can write ψ ≡ = +Φ0 B C

and Φ− = −( ) + +( )1 B ika C ikaexp exp

so that Φ− = +( ) + −( ) − +( )( )1 ψ exp exp expika B ika ika

Substituting back into Eq.(8.1.1) we obtain

       

  

E E t t ika t B ika ikac

H S

ψ ψ ψ
ψ ψ

= + − +( ) + + − −( )( ) exp exp( ) exp( )2 0 0 01 24 34 1 2444 3444 1 244444 344444
Σ

(8.1.6)

which has exactly the form we are looking for with

Σ = − +( )t ika0 exp (8.1.7a)

and S i t B ka= ( )0 2 sin (8.1.7b)

Note that the self-energy Σ is non-Hermitian and is independent of the amplitudes B,C of

the contact wavefunction. It represents the fact that the channel wavefunction can leak out

into the contact. The source term S on the other hand represents the excitation of the channel

by the contact and is proportional to B. Let us now go onto a general treatment with an

arbitrary channel connected to an arbitrary contact.

General formulation: Consider first a channel with no electrons and is disconnected from

the contacts as shown in Fig.8.1.2a. The electrons in the contact have wavefunctions ΦR{ }
that obey the Schrodinger equations for the isolated contact

E I H iR R R− +[ ] { } = { }η Φ 0  (8.1.8a)
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where [HR] is the Hamiltonian for the contact and [ IR] is an identity matrix of the same size

as [ HR]. I have added a small positive infinitesimal times an identity matrix, η[ ] = [ ]+0 IR

whose  significance we will discuss later in Section 8.4.

Now if we couple the channel to the contact as shown in Fig.8.1.2b, the contact wavefunctions
will “spill over” giving rise to a wavefunction ψ{ } inside the device which in turn will excite

scattered waves χ{ }. The overall wavefunction will satisfy the composite Schrodinger

equation for the composite contact – device system which we can write in two blocks:

E I H i

EI H
R R R− + −

− −











+







=








+η τ
τ

χ
ψ

Φ 0

0
(8.1.8b)

where [H] is the device Hamiltonian. Note that the different quantities appearing in this

equation are not numbers (except for the energy E). They are matrices of different sizes

contact

device

contact       device

H[ ]

Channel

ΦR{ }
H iR +[ ]η

Contact

H[ ]

Channel

ΦR{ }
+ { }χ

H iR +[ ]η

Contact

τ[ ] ψ{ }

Fig.8.1.2.b.  On connecting to the

contact, the contact wavefunctions

ΦR{ }  “spill over” into the device

giving rise to a wavefunction ψ{ } in

the channel which in turn generates

a scattered wave χ{ }  in the contact.

Fig. 8.1.2. (a) Channel contains no

electrons and  is disconnected from

the contact where the electrons

occupy the states described by ΦR{ } .
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Contact Hamiltonian [HR], Identity matrix: (R x R)

Channel Hamiltonian [H], Identity matrix [I]: (d x d)

Coupling Hamiltonian [ τ ]: (R x d) , [ τ+]: (d x R)

or column vectors: Contact wavefunction {ΦR} , { χ}: (R x 1)

Device wavefunction {ψ}: (d x 1)

Eq. (8.1.8b) can be written out explicitly as two separate matrix equations

E I H iR R− +[ ] { } − [ ]{ } = { }+η χ τ ψ 0

EI H R−[ ] { } − [ ] { } = [ ] { }ψ τ χ τ Φ

where we have made use of Eq.(8.1.8a). We can use straightforward matrix algebra to express

χ{ } in terms of ψ{ } from the first equation

χ τ ψ{ } = { }+GR

where G EI H iR R R≡ − +[ ] −η 1 (8.1.9)

and substitute into the second equation to obtain

EI H S− −[ ] { } = { }Σ ψ (8.1.10)

where Σ ≡ +τ τGR and S R≡ τΦ (8.1.11)

Eq.(8.1.10) has exactly the form of the result (see Eq.(8.1.1)) that we are trying to prove,

while Eq.(8.1.11) gives us a formal expression that we can use to evaluate Σ and S. It is

apparent from Eq.(8.1.9) that the quantity GR represents a property of the isolated contact

since it only involves the contact Hamiltonian HR. It is called the Green’s function for the

isolated contact whose physical significance we will discuss in the next Section.

Evaluation of Σ and S: Looking at Eq.(8.1.11), it is not clear how we could evaluate it for

specific examples, since the matrix GR is of size (R x R), which is typically huge since the
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size of the reservoir (R) is often infinite. However, we note that although the matrix [ τ ] is

formally of size (d x R), in “real space” it only couples the ‘r’ surface elements of the

reservoir next to the channel. So we could truncate it to a (d x r) matrix and write

Σ ≡ +τ τg

d x d d x r r x r r x d
R

( ) ( ) ( ) ( )
(8.1.12a)

and
S

d x d x r r x
R≡ τ φ

( ) ( ) ( )1 1
(8.1.12b)

where the surface Green’s function gR represents a (r x r) subset of the full Green’s function

GR involving just the ‘r’ points at the surface, and { φR} represents a (r x 1) subset of the

contact wavefunction { ΦR}. For example for the toy example that we discussed at the

beginning of this section, we can show that

τ = − t0 φR i B ka= − 2 sin (8.1.13a)

and g t ikaR = − ( )1 0/ exp( ) (8.1.13b)

which when substituted into Eqs.(8.1.12a,b)) yields the same results that we obtained earlier

(cf. Eqs.(8.1.7a,b)). The expression for φR is obtained by noting that it is equal to the

wavefunction Φ−1 that we would have in the contact (at the point that is connected to the

channel) if it were decoupled from the channel. This decoupling would impose the boundary

condition that Φ0 = 0, making C = - B, and the corresponding  Φ−1 is equal to (– i 2B sin ka)

as stated above. The expression for gR  takes a little more algebra to work out which we will

delegate to exercise E.8.1 at the end of the Chapter.
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Another way to evaluate  Σ and S is to work in the eigenstate representation of the contact,

so that the contact Hamiltonian HR is diagonal and the Green’s function GR is easily written

down in terms of the eigenvalues  εn of HR:

  

[ ( )]G E

E i

E i
R =

− +

− +



























+

+

1

0
0

0
1

0

1

2

ε

ε

L

L

L L L L

(8.1.14)

In this representation, the coupling matrix [ τ ] cannot be truncated to a smaller size and we

have to evaluate an  infinite summation over the eigenstates of the reservoir:

Σ( )E
E i

n n

nn

= [ ] [ ]
− +

+

+∑ τ τ
ε 0

(8.1.15a)

S E
n

n R n( ) ≡ [ ]{ }∑ τ Φ (8.1.15b)

However, this summation can often be carried out analytically after converting to a

summation. As an example, Exercise E.8.2 shows how we can obtain our old results

(Eqs.(8.1.7a,b)) for the toy problem starting from Eq.(8.1.15).

Before moving on let me briefly summarize what we have accomplished. A channel

described by a Hamiltonian [H] of size (dxd) is coupled to a contact described by a (RxR)

matrix HR[ ] , where R is typically much larger than d (R >> d). We have shown that the effect

of the reservoir on the device can be described through a self-energy matrix Σ(E) of size

(dxd) and a source term S(E) of size (d x 1).
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8.2. Local density of states

We have just seen that a channel coupled to a contact can be described by a modified

Schrodinger equation  of the form E H Sψ ψ{ } = +[ ] { } + { }Σ  where {S} represents

the excitation from the contact and the self-energy Σ represents the modification of the

channel by the coupling. Unlike [H], [H + Σ] has complex eigenvalues and the imaginary

part of the eigenvalues (a) broadens the density of states and (b) gives the eigenstates a finite

lifetime. In this Section we will talk about the first effect and explain how we can calculate the

density of states in an open system. In the next section we will talk about the second effect.

Consider the composite system consisting of the channel and the contact. Earlier in

Chapter 5 we agreed that a system with a set of eigenvalues εα  has a density of states given

by

D E E( ) = −( )∑ δ εα
α

(8.2.1)

How can different energy levels have different weights as implied in the broadened lineshape

on the right of Fig.8.1? Doesn’t Eq.(8.2.1) tell us that each energy level gives rise to a delta

function whose weight is one? The problem is that the density of states in Eq.(8.2.1) does not

take into account the spatial distribution of the states. If we want to know the local density of

states in the channel we need to weight each state by the fraction of its squared wavefunction

that resides in the channel denoted by ‘d’:

 D d E d E( ; ) ( )= −( )∑ φ δ εα α
α

2

For example, suppose the device with one energy level ε were decoupled from the reservoir

with a dense set of energy levels εR{ }. The total density of states would then be given by

while the local density of states on the channel would simply be given by

 D d E d E( ; ) ( )= −( )∑ φ δ εα α
α

2   = δ ε( )E −

D E E E E n
n

( ) ( )= − = −( ) + −( )∑ ∑δ ε δ ε δ εα
α
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since the reservoir states have wavefunctions that have no amplitude in the channel at all. Once

we couple the channel to the reservoir, things will not be so clear cut any more. There will be

one level with its wavefunction largely on the channel, but there will be many other

neighboring states with their wavefunctions residing partially on the channel. If we look at the

local density of states in the channel we see a series of energy levels with varying heights

reflecting the fraction of the squared wavefunction residing in the channel.

Fig.8.1.1. A channel with a single energy level ε coupled to a reservoir with a

dense set of energy levels εn{ } . The local density of states on the channel shows

a single sharp level, before being coupled to the reservoir. But on being

coupled, it shows a series of levels of varying heights reflecting the fraction of

their squared wavefunction that reside in the channel.

In general we can define a local density of states (LDOS)   D r E( ; )
r

that weights each

level by the square of its wavefunction at the location   
r
r :

  

D r E r E( ; ) ( ) ( )
r r

= −∑ φ δ εα
α

α
2

(8.2.2)

which can be viewed as the diagonal element (divided by 2π) of a more general concept called

the spectral function, [A(E)]:

  

A r r E r E r( , '; ) ( ) ( ) ( ')*r r r r
= −∑2π φ δ ε φα

α
α α (8.2.3)

just as the electron density

  

n r r f( ) ( ) ( )
r r

= −∑ φ ε µα
α

α
2

0 (8.2.4)
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can be viewed as the diagonal element of the density matrix:

  

ρ φ ε µ φα
α

α α( , ') ( ) ( ) ( ')*r r r r
r r r f r= −∑ 0 (8.2.5)

We have argued earlier in Section 3.3 that Eq.(8.2.5) is just the real space representation of

the matrix relation:

ρ µ[ ] = [ ] − [ ]( )f H I0 (8.2.6)

Using the same argument we could write the spectral function as

A E E I H( )[ ] = [ ] − [ ]( )2π δ (8.2.7)

and view Eq.(8.2.3) as its real space representation. If we use the eigenstates of H as our basis

then [H] is diagonal : [H] = 

  

ε1 0 0 L

0 ε2 0 L

0 0 ε3 L

L L



















and so is [A(E)] : [A(E)]=

  

2π

δ (E − ε1) 0 0 L

0 δ (E − ε2 ) 0 L

0 0 δ (E − ε3) L

L L L L





















(8.2.8)

Eq.(8.2.3) transforms this matrix to a real space representation. In principle we could write the

spectral function in any representation and its diagonal elements will tell us the LDOS (times

2π) at energy E in that representation, just as the diagonal elements of the density matrix tell

us the local electron density in that representation. The total number of electrons, N is given
by the sum of all the diagonal elements of ρ[ ]  or the trace of ρ[ ]  which is independent of

representation:

N Trace f= [ ] = −( )∑ρ ε µ
α

α0
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Similarly, the total density of states given by the trace of the spectral function [A] divided by

2π  is independent of representation and is readily written down from the eigenstate

representation:

D E Trace A E E( ) ( )= [ ] = −( )∑1
2π

δ ε
α

α (8.2.9)

Sum rule: An important point to note is that if we look at the total number of states at any

point integrated over all energy, the answer is one. If we start with a device having one level

and couple it to reservoir, it will broaden into a series of levels (Fig.8.1.1) of varying strengths

representing the fact that wavefunction for each level contributes to different extents to the

device.  But if we add up the strengths of all the levels the answer is the same as that of the

original level. What the device loses from its one level due to hybridization, it gains back from

the other levels so that the broadened level in the device can accommodate exactly the same

number of electrons that the one discrete level could accommodate before it got coupled to the

reservoir. This sum rule could be stated as follows:

  

dE D r E
− ∞

+ ∞
∫ =( ; )

r
1

and can be proved by noting that `
  

dE D r E
− ∞

+ ∞
∫ ( ; )

r

is basically the diagonal element of the matrix 
dE A E

− ∞

+ ∞
∫ [ ]( ) /2π

evaluated in the real space representation. It is easy to see from Eq.(8.1.8) that in the

eigenstate representation

  

dE
A E

2

1 0 0

0 1 0

0 0 1π− ∞

+ ∞
∫ [ ] =





















( )

L

L

L

L L L L

since dE E
− ∞

+ ∞
∫ −( ) =δ ε 1

The point is that this quantity will look the same in any representation since the identity

matrix remains unchanged by a change in basis.
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Green’s function: In evaluating the spectral function it is convenient to make use of the

identity

2
2

2 2
0

π δ ε η
ε η

α
α η

( )
( )

E
E

− =
− +













→ +

=
− +

−
− −











+ +i

E i E i

1

0

1

0ε εα α
(8.2.10a)

to write 2 0 0
1 1

πδ( ) ( ) ( )EI H i E i I H E i I H− = + −[ ] − − −[ ]







+ − + −

(8.2.10b)

where 0+  denotes a positive infinitesimal (whose physical significance we will discuss at

length in the Section 8.4). Eqs.(8.2.10b) would be a simple extension of (8.2.10a) if the

argument (EI - H) were an ordinary number. But since (EI - H) is a matrix, Eq.(8.2.10b) may

seem like a big jump from Eq.(8.2.10a). However, we can justify it by going to a

representation that diagonalizes [H], so that both sides of Eq.(8.2.10b) are diagonal matrices

and the equality of each diagonal element is ensured by Eq.(8.2.10a). We can thus establish

the matrix equality, Eq.(8.2.10b) in the eigenstate representation, which should ensure its

validity in any other representation.

Using Eqs.(8.2.7) and (8.2.10b) we can write

A(E) = i [G(E) - G+(E)] (8.2.11)

where the retarded Green's function is defined as

G E E i I H( ) ( )= + −[ ]+ −
0

1
(8.2.12a)

and the advanced Green's function is defined as

G E E i I H+ + −
= − −[ ]( ) ( )0

1
(8.2.12b)

In the next section we will see how the Green’s function (and hence the spectral function) can

be evaluated for open systems.
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Density matrix: Starting from ρ µ[ ] = [ ] − [ ]( )f H I0 (same as Eq.(8.2.6))

we can write ρ µ δ[ ] = − −[ ]( )
−∞

+∞
∫ dE f E EI H0( )

= − [ ]
−∞

+∞
∫ dE

f E A E
2 0π

µ( ) ( ) (8.2.13)

which makes good sense if we note that [A(E)] / 2π  is the matrix version of the density of

states D(E), the same way that the density matrix ρ[ ]  is the matrix version of the total number

of electrons, N. We could view Eq.(8.2.10) as the matrix version of the common sense

relation

N dE f E D E= −( )
− ∞

+ ∞
∫ 0 µ ( )

which simply states that the number of electrons is obtained by multiplying the number of

states D(E) dE by the probability f E0( ) that they are occupied and adding up the

contributions from all energies.

Why should we want to use Eq.(8.2.13) rather than Eq.(8.2.6)? In previous chapters we

have evaluated the density matrix using Eq.(8.2.6) and it may not be clear why we might want

to use Eq.(8.2.10) since it involves an extra integration over energy. Indeed if we are dealing

with the entire system described by a matrix [H] then there is no reason to do so. But if we

are dealing with an open system described by a matrix of the form (see Fig.8.2)

H
H

HR
=











+

τ

τ

then Eq.(8.2.6) requires  us to deal with the entire matrix which could be huge compared to

[H] since the reservoir matrix HR[ ]  is typically huge – that is why we call it a reservoir! The

spectral function appearing in Eq.(8.2.10) or the Green’s function too is technically just as

large

A
A A

A A
dR

Rd RR
=











,
G

G G

G G
dR

Rd RR
=










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but we only care about the top (dxd) subsection of this matrix and the great advantage of the

Green’s function approach is that this subsection of [G(E)], and hence [A(E)], can be

calculated without the need to deal with the full matrix. This is what we will show next, where

we will encounter the same self-energy matrix Σ that we encountered in the last Section.

Self-energy matrix - all over again: The overall Green’s function can be written from

Eq.(8.2.12a) as

G
G G

G G

E i I H

E i I H

dR

Rd RR R

≡








 =

+ − −

− + −













+

+ +

−
( )

( )

0

0

1
τ

τ
(8.2.14)

The power of the Green’s function method comes from the fact that we can evaluate the (dxd)

subsection [G] that we care about exactly from the relation

G E i I H E= + − −+ −[( ) ( )]0 1Σ (8.2.15)

where Σ(E0 is the self-energy matrix given in Eq.(8.1.11).

Eq.(8.2.15) follows from Eq.(8.2.14) using straightforward matrix algebra. The basic

result we make use of is the following.

If
a b

c d

A B

C D









 =











−1

(8.2.16a)

then A B

C D

a b

c d

I

I


















 =











0

0

so that   A a B c I+ =   and C a D c+ = 0 → = − −c D C a1

Hence a A B D C= −( )− −1 1
(8.2.16b)

Comparing Eq.(8.2.16a) with Eq.(8.2.14) and making the obvious replacements we obtain

from Eq.(8.2.16b)
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G E i I H GR= + − −[ ]+ + −
( )0

1
τ τ where G E i I HR R= + −[ ]+ −

( )0
1

which yields the result stated above in Eq.(8.2.15).

Eq.(8.2.16b) is a well-known result that is often used to find the inverse of large

matrices by partitioning them into smaller ones. Typically in such cases we are interested in

finding all the component matrices a, b, c and d and they are all approximately equal in size. In

our problem, however, the matrices a, A are much smaller than the matrices d, D and we only

want to find ‘a’. Eq.(8.2.15) allows us to evaluate [G] by inverting a matrix of size (dxd)

rather than the full (d+R) x (d+R) matrix in Eq.(8.2.14). This can be a major practical

advantage since R is typically much larger than d. But the idea of describing the effect of the

surroundings on a device through a self-energy function Σ[ ] is not just a convenient

numerical tool. It represents a major conceptual step and we will try to convey some of the

implications in the next Section. For the moment, let us look at a couple of examples, one

analytical and one numerical.

Analytical example: Consider a uniform infinite 1-D wire modeled with a one-band effective

mass Hamiltonian of the form

Since this is a uniform wire the eigenstates can be catalogued in terms of ‘k’ obeying a

dispersion relation  and we can use our results from Chapter 5 to write the DOS per unit cell

as

  D E a v E( ) / ( )= πh where   v dE dk= ( / ) /1 h

Now let us obtain this same result using the Green’s function method developed in this

section. We replace the infinite 1-D wire with a single unit cell and add self-energy terms to

account for the two semi-infinite wires on either side.

E tc + 2 0

  t m ac0
2 22≡ h /

− t0− t0
a

z

Σ2Σ1

E tc + 2 0
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The Green’s function for this single cell is a (1x1) matrix or a number

G E
E E t t ika t ikac

( )
exp exp

=
− + − [ ] − [ ]( )

1
2 0 0 0

which is simplified making use of the dispersion relation E E t kac= + −( )2 10 cos

to obtain

G E
t ika t ika

( )
exp exp

=
[ ] − −[ ]

1

0 0
= 1

2 0i t kasin

from which the DOS is obtained:

D E i G G( ) [ ]/= − + 2π

  = =1 2 0/ sin /π πt ka a vh !!!! same as previous result

since   hv dE dk at ka= =/ sin2 0

Numerical example: To get a feeling for the self-energy method, it is instructive to redo the

problem of finding the equilibrium electron density in a 1-D box that we discussed in Chapter

3 (see Fig.3.3.1). We consider a similar problem, namely, a 1-D box with a potential U(x) that

changes linearly from –0.1 eV at one end to +0.1 eV at the other end. We model it using a

one-band Hamiltonian with a lattice of 50 points spaced by a = 2A and with the effective mass

mc equal to 0.25 times the free electron mass m:

We wish to evaluate the electron density n(z) in the box assuming that it is in equilibrium with

an electrochemical potential µ = Ec+0.25 eV and k T eVB = 0 025. . The electron density is

E t

U
c

n

+
+ −

2 0

1

E t

U
c

n

+
+ +

2 0

1

− t0

  t m ac0
2 22≡ h /

E t

U
c

n

+
+

2 0

− t0− t0
a
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given by the diagonal elements of the density marix ρ  which we can evaluate in one of two

ways:

1. We could assume periodic boundary conditions: H(1,100) = H(100,1) = - t0 and then

evaluate ρ  from Eq.(8.1.6).

2. We could add self-energy terms (Eqs.(8.2.14), (8.2.15)) which have non-zero values
of − [ ]t ika0 exp  only on the end points (1,1) or (100,100), evaluate the Green’s

function from Eq.(8.2.3)

G E i I H= + − − −+ −[( ) ]0 1 2
1Σ Σ

obtain the spectral function from Eq.(8.2.11)) and then calculate the equilibrium

density matrix from Eq.(8.2.10).

Fig.8.2.3 shows that the two results agree well. Indeed some discrepancy is likely due to

errors introduced by the discreteness of the energy grid used for the integration in the last

step of method. We have used a grid having 250 points in the energy range Ec - 0.1 eV    <   

E     <   Ec + 0.4 eV. However, the oscillations in the first method arise from the standing

waves in a closed ring (resulting from the use of periodic boundary conditions) which are

absent in the open system modeled by the self-energy method. These oscillations in method 1

will be less pronounced for longer devices (or larger effective mass), because the energy levels

will get closer together.

As we know the effect of the self-energy is to broaden the energy level, but its

integrated strength is unchanged because of the sum rule mentioned earlier. Consequently the

distinction between the two methods is somewhat obscured when we look at the electron

density since it involves an integration over energy. The self-energy method allows us to

investigate in detail the local density of states in different parts of the device (see Fig.8.2.4).



Quantum Transport:  Atom to Transistor

Supriyo Datta, Purdue University

260

Fig. 8.2.4. Local density of states (LDOS) at two ends of a 1-D wire with a linear

potential U(x) impressed across it. The corresponding electron density is shown

in Fig.8.2.3. with µ = Ec+ 0.25 eV and k T eVB = 0 025. .

Fig.8.2.3. Plot of electron density,

n(z) calculated for a 1-D wire with a

linear potential U(z) (see Fig.8.2.4)

using periodic boundary conditions

(solid line) and using the self-

energy method to enforce open

boundary conditions (x’s).

(b) Potential U(x)
across device

(a) LDOS at left end of device (c) LDOS at right end of device
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8.3. Lifetime

In Section 8.2 we introduced the concept of Green’s function, G(E) as a convenient

way to evaluate the spectral function, A(E) based on the mathematical identity:

2 0 0
1 1

πδ( ) ( ) ( )EI H i E i I H E i I H− = + −[ ] − − −[ ]







+ − + −

    [A(E)] =    i (        [G(E)]           –        [ G+  (E)]        )

However, as we will explain in this Section, the Green’s function has a physical significance

of its own as the impulse response of the Schrodinger equation and this will help us

understand the “uncertainty” relation between the broadening of a level and the finite lifetime,

both of which result from the coupling to the reservoir. To understand the meaning of the

Green's function let us use the eigenstates of H as our basis so that the Green's function is

diagonal :

[G(E)]=

  

1

0
0 0

0
1

0
0

0 0
1

0

1

2

3

E i

E i

E i

− +

− +

− +





























+

+

+

ε

ε

ε

L

L

L

L L L L

(8.3.1)

Consider the Fourier transform of G(E) defined by

  

[ ˜ ( )] [ ( )]/G t
dE

e G ER iE t=
− ∞

+ ∞
+∫

2π h
h

which is also diagonal and looks like this :

  

[ ˜ ( )] ( )

exp /

exp /

exp /
G t

i
t e

i t

i t

i t
R t= −

−( )
−( )

−( )





















− +

h

h L

h L

h L

L L L L

ϑ

ε
ε

ε
0

1

2

3

0 0

0 0

0 0
(8.3.2)
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It takes a little work (involving contour integration on a complex plane) to get from Eq.(8.3.1)

to Eq.(8.3.2). But it is quite straightforward to go the other way from Eq.(8.3.2) to Eq.(8.3.1)

using the inverse transform relation:
  

[ ( )] [ ˜ ( )]/G E dt e G tiE t R=
− ∞

+ ∞
+∫ h

  

−

− ∞

+ ∞
− −∫ +i

dt e t e eiE t i t t

h
h h/ /( )ϑ ε 0

  

= − + ∞
− −∫ +i

dt e ei E t t

h
h

0

0( ) /ε =
− + +

1

0E iε

I should mention that here I am not using the superscript ‘R’ to denote reservoir. I am

using it to denote  ‘retarded” which refers to the fact that the function G̃R(t) is zero at all

times t < 0. It is easy to see that the diagonal elements of this function satisfies the differential

equation

  
i

t
G t tRh

∂
∂

ε δα αα−






=˜ ( ) ( )

so that we can write
  

i
t

H G t I tRh
∂
∂

δ− [ ]





=[ ˜ ( )] [ ] ( ) (8.3.3)

suggesting the interpretation of G̃R(t) as the impulse response of the Schrodinger equation

  
i

t
H th

∂
∂

− [ ]





{ } =Ψ( ) 0 (8.3.4)

The (n,m) element of this matrix ˜ ( )G tnm
R  tells us the nth component of the wavefunction if the

system is given an impulse excitation at its mth component:

m n

δ( )t
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From this point of view it seems natural to expect that the Green’s function should be

“retarded”, since we cannot have a response before the impulse is applied (which is at t = 0).

Mathematically, however, this is not the only solution to Eq.(8.3.3). It is straightforward to

show that the “advanced” Green’s function

˜ ( ) ˜ ( )
*

G t G tA R[ ] = −[ ] (8.3.5)

satisfies the same equation,
  

i
t

H G t I tAh
∂
∂

δ− [ ]





=[ ˜ ( )] [ ] ( ) (8.3.6)

but it is zero at all times after  t = 0. In the eigenstate representation we can write from

Eqs.(8.3.2) and (8.3.5):

  

[ ˜ ( )] ( )

exp /

exp /

exp /
G t

i
t e

i t

i t

i t
A t= −

−( )
−( )

−( )





















+ +

h

h L

h L

h L

L L L L

ϑ

ε
ε

ε
0

1

2

3

0 0

0 0

0 0
(8.3.7)

This is actually the Fourier transform of G+(E) (once again it is easier to do the inverse

transform). The difference between the retarded and advanced Green’s function in the energy

domain

Retarded Advanced

G E E i I H( ) ( )= + −[ ]+ −
0

1
    G E E i I H+ + −

= − −[ ]( ) ( )0
1

looks very minor: The two only differ in the sign of an infinitesimally small quantity 0+  - one

is tempted to conclude wrongly that they differ only in some insignificant sense. In the time

domain, however, their difference is hard to miss. One is zero for t < 0 (causal) and the other

is zero for t > 0 (non-causal). One is interpreted as the response to an impulse excitation at t =

0; the other has no physical interpretation but is a mathematically valid solution of the same

equation with a different unphysical initial condition. In Fig. 8.3.1 we have sketched the

magnitude of one of the diagonal elements of ˜ ( )G tR
αα  and ˜ ( )G tA

αα . Note that the spectral

function is proportional to the difference between the retarded and advanced Green's functions

(see Eq.(8.1.11)) :

˜ ( ) ˜ ( ) ˜ ( )A t i G t G tR R A
αα αα αα= −[ ]
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Since both Green's functions satisfy the same differential equation, the spectral function, [a(t)]

satisfies the homogeneous differential equation without the impulse excitation :

  
i

t
H A th

∂
∂

− [ ]





=[ ˜ ( )] [ ]0

and hence has no discontinuity at t = 0 unlike ˜ ( )G tR  and ˜ ( )G tA as shown in Fig.8.3.1.

              ˜ ( )G tR
αα               ˜ ( )G tA

αα                  
˜ ( )A tαα

 

   Retarded     Advanced     Spectral

Green's function         Green's function   function

Fig.8.3.1. Sketch of the magnitude of any diagonal element (in the eigenstate

representation) of the retarded and advanced Green's functions and the spectral

function in the time domain.

Physical meaning of the self-energy: We have seen in Section 8.2 that we can calculate the

device subsection of the full Green’s function

           G
G G

G G

E i I H

E i I H

dR

Rd RR R

≡








 =

+ − −

− + −













+

+ +

−
( )

( )

0

0

1
τ

τ
(same as Eq.(8.2.2))

exactly from the relation G E i I H E= + − −+ −[( ) ( )]0 1Σ       (same as Eq.(8.2.3))

where the self-energy Σ( ) ( )E g ER= +τ τ       (same as Eq.(8.2.7))

exp( )+ +0 t exp( )− +0 t
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can be calculated from a knowledge of the surface property of the reservoir ( gR) and the

device-reservoir coupling ( τ ).

Now that we have interpreted the time domain Green’s function as the impulse

response of the Schrodinger equation (see Eq.(8.3.3)), we could write a similar equation for

the device subset of the Green’s function by Fourier transforming Eq.(8.2.3). This would be

straightforward if the self-energy Σ were independent of the energy E:

  
i

t
H G t I tRh

∂
∂

δ− [ ] − [ ]





=Σ [ ˜ ( )] [ ] ( ) (8.3.8a)

If we take the energy dependence into account then the Fourier transform looks more

complicated. The product of Σ(E) and G(E) when transformed becomes a convolution in time

domain.

  
i

t
H G t dt t t G t I tR Rh

∂
∂

δ− [ ]





− −[ ] [ ] =∫[ ˜ ( )] ' ˜ ( ') ˜ ( ') [ ] ( )Σ (8.3.8b)

To get some insight into the physical meaning of Σ let us ignore this “detail”. In fact,

let us make the problem real simple by considering a small device with just a single energy

level ε so that [H] and [ Σ] are both simple numbers rather than matrices:

  
i

t
G t tRh

∂
∂

ε δ− −






=Σ ˜ ( ) ( )

The solution to this equation

  
˜ ( ) ( )( ) /G t

i
e tR i t= − − +

h
hε ϑΣ

tells us the wavefunction in response to an impulse excitation of the device at t = 0. we can

write

  
˜ ( ) ( )' / /G t

i
e e tR i t t= − − −

h
h hε γ ϑ2

(8.3.9)

where ε ε' Re= + Σ and γ ≡ − 2 Im Σ (8.3.10)

Reservoir ε
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The real part of the self-energy causes a shift in the device energy level from ε to ε', while the

imaginary part has the effect of giving the eigenstates a finite lifetime. This is evident from the

squared magnitude of this wavefunction which tells us how the probability decays with time

after the initial excitation:

  

˜ ( ) ( ) exp /G t t tR 2

2
1= −( )
h

hϑ γ

Clearly we can relate the lifetime of the state to the imaginary part of the self-energy:

  

1 2
τ

γ= = −
h h

ImΣ (8.3.11)

We can identify this as the “uncertainty” relation between lifetime and broadening if we note

that the imaginary part of the self-energy is equal to the broadening of the density of states.

To see this we note that the Fourier transform of the simple version of the Green’s function in

Eq.(8.3.9) is given by

G E
E i

( )
' /

=
− +

1
2ε γ

so that
A E

D E i
E i E i

( )
( )

' / ' /2
1

2
1

2π ε γ ε γ
≡ =

− +
−

− −











=
−( ) + ( )

γ
ε γE ' /2 22

showing that the LDOS on the device is broadened into a Lorentzian of width γ  equal to twice

the imaginary part of the self-energy. Of course, the lineshape in general need not be

Lorentzian. We have obtained this result because in this discussion we ignored the energy

dependence of the self-energy (in the time domain one would call it the memory effect of the

reservoir)  and used Eq.(8.3.8a) instead of (8.3.8b) for the purpose of clarity in this physical

discussion.

We have seen in Section 8.1 that the self-energy for a one-dimensional contact is

diagonal with two non-zero entries:



Chapter 8 /  Level Broadening

datta@purdue.edu All Rights Reserved

267

Σ( , ) exp cos sin11 0 0 0= − ( ) = − ( ) − ( )t ika t ka it ka

From Eq.(8.3.11) we could write the corresponding lifetime for the site ‘1’ as

  

1 2 0
τ

γ= =
h h

t kasin

It is interesting to note that the velocity associated with a particular ‘k’ in the wire is given by

  
v

E
k k

t ka
at

ka= = −[ ] = ( )1 1
2 1

2
0

0
h h h

∂
∂

∂
∂

( cos ) sin

so that we can write
  

1
τ

γ= =
h

v
a

which is intuitively satisfying since we expect the escape rate from a given cell to equal the

escape velocity divided by the size of a cell. Indeed one could use this principle to write down

the imaginary part of the self-energy approximately for more complicated geometries where

an exact calculation of the surface Green’s function may not be easy:

  Im ( ) ( ) /Σ E v E R≈ h
(8.3.12)

Here ‘R’ is a linear dimension of the unit cell, the precise arithmetic factor depending on the

specific geometry.

  v at ka= ( / ) sin2 0 h

CONTACT

E tc + 2 0

− t0− t0

a

0- 1- 2- 3
C
H
A
N
N
E
L
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Knowing the imaginary part, one can calculate the real part too from a general

principle independent of the specific details. The principle is that the real and imaginary part

must be Hilbert transforms of each other ( ⊗ denotes convolution)

Re ( ) '
Im ( ')

'
Im ( )Σ Σ ΣE dE

E
E E

E
E

=
−

= ⊗∫ 1
(8.3.13)

so that the self-energy can be written in the form

Σ Σ Σ( ) Re ( ) Im ( )E E i E= [ ] − [ ] = − ⊗ +






i E E
i
E

Im ( ) ( )Σ δ (8.3.14)

This principle is obeyed by any function whose Fourier transform is causal (that is, the

Fourier transform is zero for t < 0). The self-energy function is causal because it is

proportional to the surface Green’s function of the reservoir (see Eq.(8.2.7)) which is causal

as we discussed earlier. To see why causal functions obey this principle, we note that

δ( ) /E i E+ ( )  is the Fourier transform of the unit step function: ϑ( )t . This means that any time

domain function of the form ϑ( )t  f(t) has a Fourier transform that can be written as (product

in the time domain becomes a convolution in the transform domain)

F E E
i
E

( ) ( )⊗ +






δ

where F(E) is the transform of f(t) and is real if f(t) is a symmetric function.

Broadening matrix: In the simple case of a one-level device we have seen that the imaginary

part of the self-energy gives us the broadening or inverse lifetime of the level (see

Eq.(8.3.11)). More generally, the self-energy is a matrix and one can define a broadening

matrix Γ (E) equal to its anti-Hermitian component:

Γ Σ Σ( ) ( ) ( )E i E E= −[ ]+ (8.3.15)

This component of the self-energy is responsible for the broadening of the level, while the

Hermitian component
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Σ Σ ΣH E E E( ) ( ) ( )= +[ ]+1
2

can conceptually be viewed as a correction to the Hamiltonian [H]. Overall we could write

H E H E
i E

H+ = +[ ] −Σ Σ Γ
( ) ( )

( )
2

We have often made use of the fact that we can simplify our description of a problem by

using the eigenstates of the Hamiltonian [H] as our basis.  For open systems we would want

to use a representation that diagonalizes [H + ΣH] in our energy range of interest. If the same

representation also diagonalizes [Γ ], then the problem could be viewed simply in terms of

many one-level devices in parallel. But in general this may not be the case. The representation

that diagonalizes [H + ΣH] may not diagonalize [Γ ] and vice versa. We can then diagonalize

one or the other but not both and interesting new physics beyond the one-level example can

result.
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8.4. Irreversibility

One might wonder how a non-Hermitian operator Σ could emerge from a system

consisting of two parts each of which is described by a Hermitian operator (H and HR in

Fig.8.2)! Mathematically, this results from the “infintesimal” i0+  (see Eq.(8.3.1)) that

converts the retarded Green’s function (see Fig.8.3.1) from the non-decaying function on the

left to a weakly decaying function on the right:

This is often justified mathematically as an artifice used to ensure the convergence of the

Fourier transform. However, this seemingly innocuous step essentially converts a reversible

system into an irreversible one by adding an imaginary (non-Hermitian) component i0+  [I]

int an otherwise Hermitian matrix [H]. Surely something this profound cannot be the result of

a minor mathematical artifice designed to ensure convergence! It is thus reasonable to ask

what this infinitesimal i 0+  physically represents.

To understand this, let us consider a device with a single state with ε = 0, and a

reservoir that consists of numerous closely spaced energy levels:   εr r, , ,={ }1 2 L  as shown in

Fig.8.4.1. The point I want to make is that the infintesimal i0+represents the rate at which the

electron is extracted from the reservoir levels by external devices (like a battery terminal for

instance) and the system will behave irreversibly as long as this quantity exceeds the spacing

between the energy levels in the reservoir. Typically with large reservoirs, the energy levels are

extremely closely spaced (perhaps by pico eV!) and only an infinitesimal external influence

(expressed by the infintesimal i0+ , whose precise value is unimportant)  is needed to induce

irreversible behavior. But if the level spacing were larger, say meV (and this is not unlikely

with “nanostructured contacts”) then the behavior of the system will depend on the precise

value of i 0+  reflecting the actual broadening of “reservoir” levels by external influences. In

this case the contact is really not functioning like a reservoir.

t

exp −( )+0 t

t
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Fig.8.4.1. A device with a single state with ε = 0 is coupled to a reservoir that

consists of numerous closely spaced energy levels:   εr r, , ,={ }1 2 L . T h e

infintesimal i 0+represents the rate at which the electron is extracted from t h e

reservoir levels by external devices (like a battery terminal for instance) and t h e

system will behave irreversibly as long as this quantity exceeds the spacing

between the energy levels in the reservoir.

Let me explain my point a little further with a numerical example. The overall system

in Fig.8.4.1 is described by a large Hamiltonian matrix of the form

  

ε τ τ τ

τ ε

τ ε

τ ε

1 2 3

1 1

2 2

3 3

0 0

0 0

0 0

L

L

L

L

L L L

*

*

*

























We have seen that we can eliminate the reservoir degrees of freedom and describe the device

with a (1x1) “matrix”  ε +[ ]Σ  where (see Eq.(8.2.4))

Σ =
− +











∑

→ +

τ
ε η

η

r

rr
E i

2

0

so that
Re

( )

( )
Σ =

−
− +











∑

→ +

τ ε
ε η

η

r r

rr

E

E

2

2 2
0

(8.4.1)

i 0+
Reservoir ε

  εr r, , ,=1 2 L
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− =
− +











∑

→ +
Im

( )
Σ

τ η
ε η

η

r

rr E

2

2 2
0

(8.4.2a)

 → −∑π τ δ εr
r

rE
2

( ) (8.4.2b)

We have seen that the broadening and the inverse lifetime are related to the imaginary part of

the self-energy and can be written as (see Eq.(8.3.11))

  

1 2 2 2

τ
γ π τ δ ε= = − = −∑
h h h

Im
( )

Σ
r

r
rE (8.4.3a)

If the coupling elements τr  are all approximately equal, then we can take it outside the

summation and simplify Eq.(8.4.3) to

  

1 2 22 2

τ
γ π τ δ ε π τ= ≈ − =∑
h h h

r
r

r r RE D E( ) ( ) (8.4.3b)

where DR (E) is the reservoir density of states. This is a standard result, often referred to as

Fermi's golden rule.

The inverse lifetime in Eq.(8.4.3) is interpreted as the rate at which an electron initially

located in the device escapes into the reservoir. But this interpretation is appropriate only if the

infinitesimal η appearing in Eq.(8.4.2) is larger than the spacing between the energy levels of

the reservoir. For example, if we assume that the reservoir has 2000 equally spaced energy

levels between –1 and 1 eV, then DR (E) = 1000/ eV (since we have 2000 levels evenly

distributed over 2 eV). Fig.8.4.1a shows the device LDOS calculated from

D E
A E

G E
E E

( )
( )

Im ( ) Im
( )

= = − = −
− −









2
1 1 1

π π π ε Σ

using the expression for the self-energy Σ( )E  from Eq.(8.4.2a) with each of the coupling

matrix elements τr  set to .005 eV and the infinitesimal 0+  set to .001eV.
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The resulting lineshape is well described by a Lorentzian

D E
E

( )
/

/
=

+ ( )
γ π

γ
2

22 2
(8.4.4)

with a width γ  given by Eq.(8.4.3b): γ π= [ ] [ ] ≈2 0 005 1000 0 07852. / .eV eV eV .

Now consider what happens if we choose a reservoir with states that are 100 times

less dense but with the coupling elements τr  that are 10 times as strong. The corresponding

broadening γ  is unchanged. But the LDOS now looks distinctly different, depending on

whether we use 0 05+ → . eV or 0 001+ → . eV (see Fig.8.4.1b). With 0 05+ → . eV, we have

a single broadened line whose Fourier transform looks like a decaying exponential
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Fig.8.4.1. LDOS for a one-level device connected to a reservoir: (a) DR (E )

= 1000/eV, τr = .005 eV and 0+ → .001 eV. (b) DR (E) = 10/eV, τr = .05 eV

and two values of 0+ .

without
reservoir
coupling

with
reservoir
coupling

0 001+ → . eV

0 05+ → . eV

(a) D E eVR( ) /= 1000 ,
τr = .005 eV

(b) D E eVR( ) /=10 ,
τr = .05 eV

0 001+ → . eV
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indicating that an electron placed in the device will escape into the reservoir with a lifetime of

τ . By contrast, with 0 001+ → . eV, we have a line consisting of multiple spikes whose

Fourier transform looks periodic with a period T h E= /∆  ( ∆E : spacing between energy

levels in the reservoir) which is known as the recurrence time

indicating that an electron placed in the device will oscillate back and forth between the device

and reservoir if the infinitesimal “0+” is smaller than ∆E .

This is really an old problem in physics that is not unique to quantum mechanics. For

example we know that if we turn off a car it will slow down and lose its energy to the surface

of the road which will get heated. But if we tried to use Newton’s law to model this by

coupling the car to a finite number of “molecules” on the surface of the road, we would end

up with reversible behavior. The car would slow down initially, but after some time would gain

back all the energy from the road – a result completely at odds with our everyday experience

where the energy flows away for ever and never comes back. To include this in a theoretical

model we would either have to add a damping term to the molecules (equivalent to adding

i0+)  or use a system so large that the recurrence time is larger than our time of simulation.

The same is true of electrons escaping into any “contact”. Occasionally experiments

do show “echoes” but this happens seldom enough that people write papers when they see it.

And so to describe the observed behavior in the real world it is necessary to assume that the

reservoir states have a broadening 0+  from their interaction with the surroundings that

exceeds their level spacing, making the reservoir density of states essentially a continuous

function of energy, rather than a set of discrete impulses. But it is important to remember that

a “nanocontact” may not function like a traditional reservoir if it has an energy level spacing

that exceeds its broadening“0+” due to external influences.

exp −[ ]+0 t

t

....
T

Partially
reversible
behavior
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Exercises

E.8.1. Assume a 1-D one band effective mass model for a 1-D lead

Starting from Eq.(8.1.9) G E i I HR R= + −[ ]+ −
( )0

1

Show that G g ika tR R( , ) exp /0 0 0≡ = − ( ) (8.1.13b)

E.8.2. Starting from Eqs.(8.1.15a), evaluate the self-energy for a semi-infinite lead by

carrying out the summation analytically after converting to an integral and compare with

Eq.(8.1.15).

E.8.3. Consider a1-D wire with a potential U(x) that changes linearly from –0.1 eV at one end

to +0.1 eV at the other end and model it using a one-band Hamiltonian with a lattice of 50

points spaced by a = 2A and with the effective mass mc equal to 0.25 times the free electron

mass m:

Calculate the electron density n(z) in the wire assuming that it is in equilibrium with an

electrochemical potential µ = Ec+0.25 eV and k T eVB = 0 025. , using (a) periodic boundary

conditions and (b) the self-energy method. Compare with Fig.8.2.3.

Calculate the LDOS at the two ends of the box from the self-energy method and compare

with Fig.8.2.4.

E t

U
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n

+
+ −

2 0

1

E t

U
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+
+ +

2 0

1

− t0

  t m ac0
2 22≡ h /

E t

U
c

n

+
+

2 0

− t0− t0
a

z

E tc + 2 0

− t0− t0

a

0- 1- 2- 3  t m ac0
2 22≡ h /
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E.8.4.  Consider a device with a single state with ε  = 0, connected to a reservoir such that the

overall system is described by a Hamiltonian [H] of the form

  

ε τ τ τ

τ ε

τ ε

τ ε

1 2 3

1 1

2 2

3 3

0 0

0 0

0 0

L

L

L

L

L L L

*

*

*

























Calculate the LDOS in the device as a function of the energy E using the parameters indicated

in Fig.8.4.1.


