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7 / Capacitance

7.1. Model Hamiltonian

7.2. Electron density  / Density matrix

7.3. Quantum vs. electrostatic capacitance

7.4. Supplementary notes: Multiband effective mass equation

In Chapter one I stated that the full quantum transport model required us to

generalize each of the parameters from the one-level model into its corresponding matrix

version. Foremost among these parameters is the Hamiltonian matrix [H] representing

the energy levels and we are almost done with this aspect. This chapter could be viewed

as a transitional one where we discuss an equilibrium problem that can be handled

using [H] alone, without a knowledge of other parameters like broadening that we will

discuss in the next Chapter.

The problem we will discuss is the following: How does the electron density inside the

device change as a function of the gate voltage,VG  assuming that the source and the

drain are held at the same potential (drain voltage VD = 0, see Fig.7.1)? Strictly

speaking this too is a non-equilbrium problem since the gate contact is not in

equilibrium with the source and drain contacts (which are in equilibrium with each

other). However, the insulator isolates the channel from the gate and lets it remain

essentially in equilibrium with the source and drain contacts which have the same

electrochemical potential µ µ µ1 2= ≡ . The density matrix (whose diagonal elements in a

real space representation give us the electron density n(  
r
r )) is given by

Fig.7.1. An MOS

capacitor. The problem is

to find the charge

induced in the channel in

response to an applied

gate voltage VG . VD =  0
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ρ µ[ ] = [ ] − [ ]( )f H I0 (7.1)

and can be evaluated simply from [H] without a detailed  knowledge of the coupling to

the source and drain. I am assuming that the channel is large enough that its energy

levels are nearly continuous so that the broadening due to the source and drain coupling

makes no significant difference.

The matrix [H] includes two parts (cf. Section 1.4)

H H U= + [ ]( )0 δρ (7.2)

where H0 represents just the isolated materials deduced from a knowledge of their

bandstructure, while U represents the potential due to the applied gate voltage and any

change in the density matrix from the reference condition described by H0. Neglecting

any corrections for correlation effects (see Section 3.2), we can calculate U from the

Poisson equation describing Coulomb interactions (εr  is the relative permittivity which

could vary spatially):

  

r r r
∇ ⋅ ∇( ) = − −( )ε

εr U
q

n r n
2

0
0( ) (7.3)

subject to the boundary conditions: U Usource drain[ ] = [ ] = 0

U qVgate G[ ] = −

In this chapter I will use this problem to illustrate how we choose the Hamiltonian [ H0]

to describe an inhomogeneous structure like a transistor (Section 7.1), how we evaluate

the density matrix [ ρ] (Section 7.2) and finally (Section 7.3) how the capacitance, C

obtained from a self-consistent solution of Eqs.(7.1)-(7.3) can be viewed as a series

combination of an electrostatic capacitance, CE that depends on the dielectric constant

and a quantum capacitance, CQ that depends on the density of eigenstates in  the

channel.
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7.1. Model Hamiltonian

Atomistic Hamiltonian: Let us start with the question of how we write down [ H0] to

represent the inhomogeneous collection of isolated materials that comprise the device,

from a knowledge of their individual bandstructures. For example, we could model the

channel material with a [H0] that can be represented schematically as a network of unit

cells [ Hnn] interconnected by ‘bonds’ [ Hnm] of the same size (bxb). Each of these

matrices is of size bxb, ‘b’ being the number of basis functions per unit cell.

Fig.7.1.1. Any part of the device like the channel can be represented by an

atomistic Hamiltonian matrix which can be depicted schematically as a 3 - D

network of unit cells described by matrices [ Hnn ] and bonds described by

matrices [ Hnm], n ≠≠≠≠ m. We have arranged the unit cells in an FCC-like

network since that is the arrangement for most  common semiconductors.

Note that the matrices [ Hnm] for different neighbors ‘m’ are in general

different though we have represented them all with the same symbol.

We have seen in Chapter 4 that knowing all the [ Hnm] the full bandstructure can be

calculated from the eigenvalues of the (bxb) matrix

     

  
[ ( )]

.
h k H enm

m

i k dm dnr r r r

= [ ]∑ −( ) (7.1.1)

(which is independent of ’n’) for each value of ‘  
r
k ’. Conversely, we can write down the

matrices [ Hnm] from a knowledge of the bandstructure and thereby write down the

matrix [ H0] representing a periodic solid which is of size (NbxNb), N being the total

number of unit cells.

CHANNEL
Hnn[ ]

Hnm[ ]
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The insulator material would obviously be described by a different set of

matrices which can be deduced from its bandstructure. The difficult part to model is the

interface. This is partly due to our ignorance of the actual atomistic structure of the

actual interface. But assuming that we know the microstructure exactly, it is still not

straightforward to figure out the appropriate bond matrix [ Hnm] between two unit cells

‘n’ and ‘m’ belonging to different materials A and B. Clearly this information is not

contained in the individual bandstructures of either A or B and it requires a more careful

treatment. We will not get into this question and simply represent an A-B bond using

the average of the individual [Hnm]’s for A-A bonds and B-B bonds.

Effective mass Hamiltonian: We have seen before (see Fig.5.1.2) that the energy levels

around the conduction band minimum can often be described by a simple relation like

  
h k E

k
mc

c
( )
r h= +

2 2

2
(7.1.2)

where Ec and mc are constants that can be determined to obtain the best fit. We could

easily write down a differential equation that will yield energy eigenvalues that match

Eq.(7.1.2). We simply have to repace   
r
k with   − ∇i

r
 in the expression for h(  

r
k):

  

E
m

f r E f rc
c

− ∇












=h r r2
2

2
( ) ( )

(7.1.3)

It is easy to check that the plane wave solutions, 
  
f r ik r( ) exp

r r r
= ⋅( ) with any   

r
k  are

eigenfunctions of this differential equation with eigenvalues

  
E k E k mc c( ) /

r
h= + ( )2 2 2 . We could use the finite difference method (Section 1.2)

to convert Eq.(7.1.3) into a Hamiltonian matrix, that is much simpler than the original

atomistic Hamiltonian. For example in 1-D we could write a tridiagonal matrix with

E tc + 2 0 on the diagonal and − t0 on the upper and lower diagonals (see Eq.(1.3.1))

that can be represented in the form

  t m ac0
2 22≡ h /

E tc + 2 0

− t0− t0

a
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We can use the basic bandstructure equation in Eq.(7.1.1) to write down the

corresponding dispersion relation:

h k E t t e t ex c
ik a ik ax x( ) = +( ) − − −2 0 0 0     = + −( )E t k ac x2 10 cos

Fig.7.1.2. The effective mass Hamiltonian matrix can be depicted

schematically as a 3-D network of unit cells (unrelated to the actual crystal

structure) with energy E tc + 6 0  bonded to its nearest neighbors by − t0 .

For a general 3-D structure the effective mass Hamiltonian has the form shown in

Fig.7.1.2 leading to the dispersion relation

      
  
h k E t k a t k a t k ac x y z

r( ) = + −( ) + −( ) + −( )2 1 2 1 2 10 0 0cos cos cos (7.1.4a)

which reduces to the parabolic relation in Eq.(7.1.2) if k ax  is small enough that

(1− cos k ax ) can be approximated with ( ) /k ax
2 2 (and the same with k ay  and k az ):

  
h k E

m
k k kc

c
x y z( )

r h= + + +( )
2

2 2 2

2
(7.1.4b)

This Hamiltonian only describes the eigenstates around the bottom of the conduction

band where Eq.(7.1.2) provides an adequate approximation, unlike an atomistic

Hamiltonian that describes the full bandstructure (see Eq.(7.1.1)). What we gain,
however, is simplicity. The resulting Hamiltonian matrix H0[ ]  is much smaller than the

atomistic counterpart for two reasons. Firstly, the matrices Hnm[ ] representing a unit

cell or a bond are scalar numbers rather than (bxb) matrices. Secondly the unit cells in

E tc + 6 0

− t0

  t m ac0
2 22≡ h /

a
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Fig.7.1.2 do not have to correspond to atomic unit cells as in atomistic Hamiltonians

(see Fig.7.1.1). The lattice can be simple cubic rather than face-centered cubic (FCC)

and the lattice constant ‘a’ can be fairly large depending on the energy range over which

we want the results to be accurate. A simple rule of thumb is that ‘a’ should be small

enough that the corresponding t0 is larger than the energy range (above Ec) we are

interested in. Since   t m ac0
2 22≡ h / , this means that for a given energy range, we can use

a larger ‘a’ if the effective mass mc is small. But it is important to remember that the

wavefunction does not provide information on an atomic scale. It only provides

information on a coarse spatial scale and is sometimes referred to as as “envelope

function”.

Spatially varying effective mass: Effective mass equations are often used to model

“heterostructures” consisting of different materials such that the conduction band edge

Ec and/or the effective mass mc appearing in

  

E
m

f r E f rc
c

− ∇












=h r r2
2

2
( ) ( )

(same as Eq.(7.1.3))

vary spatially. The variation of Ec leads to no special problems, but the variation of mc

cannot be incorporated simply by writing

  

E r
m r

f r E f rc
c

( )
( )

( ) ( )
r h

r
r r

− ∇












=
2

2

2

The correct version is

  

E r
m m r

f r E f rc
c c

( ) .
( )

( ) ( )
r h r

r
r r r− ∇ ∇



















=
2

2

1
(7.1.5)

and it can be shown that if we apply the finite difference method to this version at an

interface where the effective mass changes from m1 to m2 then we obtain a Hamiltonian

matrix that can be represented as
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The point to note is that the resulting Hamiltonian matrix

− + −
− + + −

− + −

















t E t t

t E t t t

t E t t

c

c

c

1 1 1

1 1 2 2

2 2 2

2 0 0

0 0

0 0 2

is Hermitian as needed to ensure that the energy eigenvalues are real and current is

conserved. By contrast if we start from one of the other possibilities like

  

E
m r

f r E f rc
c

− ∇












=h
r

r r2
2

2 ( )
( ) ( )

and use the finite difference method we will end up with a Hamiltonian matrix of the

form ( t t t0 1 2 2≡ +( ) / )

− + −
− + −

− + −

















t E t t

t E t t

t E t t

c

c

c

1 1 1

0 0 0

2 2 2

2 0 0

0 2 0

0 0 2

which is clearly non-Hermitian.

As we have mentioned before, writing down the appropriate Hamiltonian for the

interface region requires a knowledge of the interfacial microstructure and simple

approximations are often used. But the important point to note is that whatever

approximation we use, a fundamental zero-order requirement is that the Hamiltonian

matrix should be Hermitian. Otherwise we can run into serious inconsistencies due to

the non-conservation of probability density and the resulting lack of continuity in

electron flow.

− t1− t1 − t2− t2

E tc + 2 2E tc + 2 1

  t m a1
2

1
22≡ h /   t m a2

2
2

22≡ h /

E

t t
c +
+1 2

− t2− t1
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An example:  One-band effective mass models are widely used to model

heterostructures of materials that are not too different. Consider for example, a GaAs

quantum well sandwiched between   A Ga Asl 0 3 0 7. . barriers. For GaAs we use Ec = 0

eV, mc = 0.07m, while for A  lAs,  Ec = 1.25 eV,  mc = .15m and interpolate linearly to

obtain Ec and mc for the A  lAs-GaAs alloy. Fig.7.1.3 shows the energies of the two

lowest levels in the GaAs quantu well as a function of the well width, while Fig.7.1.4

shows the dispersion relation E(  
r
k) as a function of the magnitude of the in-plane

wavevector   
r
k  = { k kx y} for the two lowest subbands of a quantum well with W =

69A.

Fig.7.1.3. Energy of the two lowest

energy levels of a GaAs quantum

well sandwiched between

Al0.3Ga0.7As barriers (shown in

inset) as a function of the well

width (W) calculated from a

one-band effective mass model.
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the dispersion relation E(  
r
k )
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magnitude of the in-plane

wavevector 
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the two lowest subbands of a

quantum well with W = 6.9
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Problems like this are essentially one-dimenaional and easy to solve

numerically. The basic idea is that our usual prescription for obtaining the effective

mass equation is to replace   
r
k  with -i  

r
∇  which consists of three simultaneous

replacements:

k i xx → − ∂ ∂/ , k i yy → − ∂ ∂/ , k i zz → − ∂ ∂/

To obtain a 1-D effective mass equation while retaining the periodic boundary condition

in the x-y plane, we replace kz with − i z∂ ∂/  in   h k( )
r

, while leaving kx  , ky intact:

h k k k i z U z z E f zx y z m( , ; / ) ( ) ( ) ( )⇒ − +[ ] =∂ ∂ ϕ (7.1.6)

For example, if we start from the one-band effective mass relation,

  
h k E

k
mc

c
( )
r h= +

2 2

2
(same as Eq.(7.1.2))

we obtain

   

  

E
z m z

U z
m z

k k z zc
c c

x y m m−








 + + +( )













=h h2 2
2 2

2
1

2
∂
∂

∂
∂

ϕ ε ϕα( )
( )

( ) ( )

(7.1.7)

which is a 1-D equation that can be numerically solved for any given value of  kx , ky.

The one-band effective mass model works very well when we have an isotropic

parabolic band that is well separated from the other bands. This is usually true of the

conduction band in wide bandgap semiconductors. But the valence band involves

multiple closely spaced bands which are strongly anisotropic and non-parabolic and a

multi-band effective mass model is needed for a proper treatment of the valence band

(“p-type” devices) or even the conduction band in narrow-gap semiconductors.

General device models based on multi-band models (see supplementary notes in Section

6.4) and atomistic models are topics of current research and I will not discuss them in

any depth in this book. I will largely use the one-band model to illustrate the essential

concepts underlying the treatment of equilibrium and non-equilibrium problems.

However, I will try to describe the approach in a general form that readers can adapt to

more sophisticated Hamiltonians in the future as the need arises.
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7.2. Electron density / Density matrix

Once we have identified the basic Hamiltonian matrix H0 representing the

isolated materials comprising a device, the next step is to evaluate the density matrix

(specially the diagonal elements in a real space representation which give us the electron

density)

  

n r r r r f( ) ( , ) ( )
r r r r

= = −( )∑2 2 2
0ρ φ ε µα

α
α (7.2.1)

where   φα( )
r
r  are the eigenfunctions of [H] with eigenvalues εα , with [H] given by

H H U= + [ ]( )0 δρ (7.2.2)

where U represents the potential due to the applied gate voltage and due to any change

in the density matrix from the reference condition described by H0. In general the

matrix representation [U] of the function   U r( )
r

 requires a knowledge of the basis

functions, but if the potential varies slowly from one unit cell to the next, then we can

simply assume the potential to have a constant value U(  
r r
r dn= ) throughout a unit cell

‘n’ so that

  U U r d Inn n[ ] = = [ ]( )
r r

and Unm[ ] = [0] for m ≠ n (7.2.3)

where [I] and [0] are the identity matrix and the null matrix of the appropriate size.

How do we calculate U(  
r
r )? Neglecting any corrections for correlation effects

(see Section 2.2), we can use the Poisson equation describing Coulomb interactions (εr

is the relative permittivity which could vary spatially):

  

r r r
∇ ⋅ ∇( ) = − −( )ε

εr U
q

n r n
2

0
0( ) (7.2.4)

subject to the boundary conditions: U Usource drain[ ] = [ ] = 0

U qVgate G[ ] = −
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What we need is a “Schrodinger-Poisson solver” that solves the two aspects of

the problem self-consistently as shown schematically in Fig.7.2.1. In general, 3-D

solutions are needed but this is numerically difficult and we will use an essentially 1-D

example to illustrate the “physics”.

1-D Schrodinger-Poisson solver: There are many problems that can be modeled with a

1-D Schrodinger Poisson solver: the MOS capacitor (Fig.7.2.2) we mentioned at the

beginning of this chapter represents such an example if we neglect any boundary effects

in the x-y plane. What do the1-D version of the equations in Fig.7.2.1 look like? Let us

assume we are using the one-band effective mass Hamiltonian. We might guess that we

should first solve a 1-D version of Eq.(7.1.3)

  

E
m z

U z z zc
c

m m m− +












=h2 2

22
∂
∂

ϕ ε ϕ( ) ( ) ( )
(7.2.5)

then evaluate the electron density from the 1-D version of Eq.(7.2.1)

n z z fm
m

m( ) ( )= −( )∑2 2
0φ ε µ (WRONG) (7.2.6)

and do all this self-consistently with a1-D version of Eq.(7.2.4):

− =d
dz

dU
dz

q
n zr( ) ( )ε

ε

2

0 (7.2.7)

“Schrodinger”

H U0 +[ ] =φ ε φα α α

  

n r r f( ) ( )
r r

= −( )∑2 2
0φ ε µα

α
α

  

r r r
∇ ⋅ ∇( ) = − −( )ε

εr U
q

n r n
2

0
0( ) Poisson

Fig.7.2.1. Modeling a

device in equilibrium

generally requires a

self-consistent solution

of a “Schrodinger”

equation with the

Poisson equation.
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All the 1-D versions listed above are correct except for Eq.(7.2.6). The Fermi function

f0 appearing in this equation should be replaced by a new function f D2  defined as

f E N E k TD B2 0 1( ) ln exp /= + −[ ]( )    with   
  
N

m k Tc B
0 22

≡
πh

(7.2.8)

cf. f E
E k TB

0
1

1
( )

exp /
=

+ [ ]

The correct 1-D version of the Schrodinger-Poisson solver is shown below in Fig.7.2.2.

Where does this new function f D2  come from? As long as the structure can be

assumed to be uniformly periodic in the x-y plane and we can neglect all boundary

effects, the eigenfunctions can still be written in the form of plane waves in the x- and y-

directions:

  

φ ϕα( )
exp exp

( )
r
r

ik x

L

ik y

L
zx

x

y

y
m= [ ] [ ]

(7.2.9)

and the electron density is obtained from Eq.(7.2.1) after summing over all three indices
m k kx y, ,{ } ≡ α :

n z z f
k k

m
m x y

( ) ( )
,

= −( )∑∑2 2
0φ ε µα (7.2.10)

Fig.7.2.2. The 1-D

Schrodinger-Poisson

solver.

“Schrodinger”

−






= −( )∂
∂

ε ∂
∂ εz z

U
q

n z n
2

0
0( ) Poisson

H U

n z z f

z m m m

m
m

D m

+[ ] =

= −( )∑
φ ε φ

φ ε µ( ) ( )2
2

2
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Eq.(7.2.6) is wrong because it simply ignores the summations over k kx y, . The correct

version is obtained by noting that

  
ε εα = + +( )m

c
x ym

k k
h2

2 2

2
(7.2.11)

which follows from Eq.(7.1.7) with a constant (z-independent) effective mass. Note that,

things could get more complicated if the mass itself varies with z since the extra term

  

h2
2 2

2m z
k k

c
x y( )

+( )
would no longer be a constant that can just be added on to obtain the total energy.

Under some conditions, this may still be effectively true since the wavefunction is

largely confined to a region with a constant effective mass (see for example Problem

6.1c), but it is not generally true. Also, the simple parabolic relation in Eq.(7.2.11)

usually does not hold for the multiband effective mass equation (see Fig.7.4.4).

Using Eq.(7.2.11), the summation over kx  , ky can now be performed

analytically to show that

  

f f
m

k k
k k k k

m
c

x y

x y x y

0 0

2
2 2

2
ε µ ε µα −( ) = − + +[ ]









∑ ∑

, ,

h

= −( )f D m2 ε µ (7.2.12)

This is shown as follows:

  

1
2

2

4

1

1 2

0

2
2 2

2 2 2
0

S
f E

m
k k

kdk

A k m k T
where A E k T

c
x y

k k

c B
B

x y

+ +[ ]










=
+ [ ] ≡ [ ]

∑

∫
∞

h

h

,

exp /
exp /

π
π

  

=
+ [ ]

∞
∫m k T dy

A y
c B

2 12
0πh exp
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= +[ ]{ }−

∞

m k T
A ec B y

2 2

0

πh
ln

  
= + −[ ][ ] ≡m k T

E k T f Ec B
B D

2
1

2 2
πh

ln exp / ( )

This relation (Eq.(7.2.12)) allows us to simplify Eq.(7.2.10) to obtain the equation listed

in Fig.7.2.2:

n z z fm
m

D m( ) ( )= −( )∑2 2
2φ ε µ (7.2.13)

A numerical example:

We can model the MOS capacitor shown above by setting up a 1-D Schrodinger-

Poisson solver assuming the cross-section to be uniform in the x-y plane with periodic

boundary conditions.

D
R
A
I
N

S
O
U
R
C
E

VG

VG

Gate

Gate

       INSULATOR

CHANNEL

        INSULATOR

x

z

Fig.7.2.3. The M O S

capacitor can b e

modeled with a 1 - D

Schrodinger equation

if we neglect any

boundary effects in t h e

x-y plane.
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We set up a lattice along the z-direction with a 1-D Hamiltonian, Hz that looks like

Fig.7.2.4. 1-D one-band effective mass Hamiltonian used to model a channel

sandwiched between two insulators.

where we have assumed that both the conduction band edge Ec and the effective mass

mc could be different for the insulator and the channel. However, we will use

Eq.(7.2.13) with N0 (see Eq.(7.2.8)) given by the channel effective mass, since the

wavefunctions are strongly excluded from the insulator region.

Once we have set up this Hamiltonian Hz it is straightforward to evaluate the

electron density n(z) which can be viewed as the diagonal elements of the 1-D density

matrix given by

ρ φ ε µ φ( , ') ( ) ( ')*z z z f zm
m

D m m= −( )∑ 2 (7.2.15a)

As we have discussed before (see discussion following Eq.(3.3.8)) we could view

Eq.(7.2.15a) as the real space representation of a more general matrix relation

ρ µ= −f H ID z2 ( ) (7.2.15b)

As before, the function of a matrix Hz[ ] is evaluated by (1) first diagonalizing  Hz[ ],

(2) calculating the density matrix in the eigenrepresentation and then (3) transforming it

back to the real space lattice. This can be achieved in MATLAB using the set of

commands

E tc2 22+E tc1 12+

− t2− t1− t1 − t1

E E

t t
c c1 2

1 2

2+( )
+ +

/

− t2
a

Channel , Ec2

  t m ac2
2

2
22≡ h /

Insulator, Ec1

  t m ac1
2

1
22≡ h /

Insulator, Ec1

  t m ac1
2

1
22≡ h /
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1.  [V, D] = eig(Hz); D = diag (D);

2. rho = log(1+(exp(mu-D)./kT));

3. rho = V * diag(rho) * V’; N = diag(rho);

The electron density n(z) is obtained from N by multiplying with 2N0 (see Eq.(7.2.8),

with an extra factor of two for spin) and dividing by the size of a unit cell ‘a’: n(z) = N

* 2 N0 / a.

We can use the same lattice to solve the Poisson equation

− =d
dz

dU
dz

q
n zr( ) ( )ε

ε

2

0

which looks just like the Schrodinger equation and can be solved by the method of finite

differences in exactly the same way:

D U
q

a
N a N Ubdy2 2

2

0
0

2[ ] { } = ( ) { } + { }
ε

(7.2.16)

where [D2] is the matrix operator representing the second derivative. For a constant εr ,

[D2] 

  

≡

−
− −

− −



















εr

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

L

L

L

L L L L L L

(7.2.17)

Spatial variations in εr  can be handled in the same way that we handled spatially

varying effective masses. The boundary term comes from the non-zero values of U at

the two boundaries:

  
U qV qVbdy

T
r G G{ } = − −{ }ε 0 0L L (7.2.18)

Knowing N, we can calculate the potential U from Eq.(7.2.16):
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U
q

a
N a D N D Ubdy{ } = ( ) [ ] { } + [ ] { }− −

2

0
0

2 1 12 2 2
ε

(7.2.19)

Fig.7.2.5a,b show the equilibrium band diagram and electron density for a 3 nm

wide channel and a 9 nm wide channel respectively. We have assumed that the

conduction band edge Ec is zero in the channel and at 3 eV in the insulator. We use a

relative dielectric constant εr = 4 and an effective mass mc = 0.25m everywhere. Also,

we have assumed that the electrochemical potential µ is equal to Ec. In real structures

the proper location of µ is set by the work function  of the metal. The thickness of the

oxide is assumed to be 2.1 nm and the calculation was done using a discrete lattice with

a = 0.3 nm. The gate voltage VG  is assumed to be 0.25V.

For the 3 nm channel, the charge density is peaked near the middle of the

channel as we might expect for the wavefunction corresponding to the lowest energy

level of a "particle in a box" problem. By contrast the semiclassical charge density piles

up near the edges of the channel as we might expect from purely electrostatic

considerations. This is an example of what is referred to as size quantization. It

disappears as we make the channel wider, since the "particle in a box" levels get closer

together and many of them are occupied at low temperatures. Consequently the electron

distribution looks more classical for the 9 nm channel. Also shown in dotted lines is the

electron density if the gate voltage is applied asymmetrically: 0V on one gate and 0.25V

on the other gate. Note that for the 9 nm channel there is a significant skewing of the

distribution when the bias is applied asymmetrically, as we would expect intuitively.  But

for the 3 nm channel the electron distribution is only slightly changed from the

symmetric to the asymmetric bias. The wavefunction remains relatively unaffected by

the applied bias, because the eigenstates are further separated in energy.
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Fig.7.2.5. An MOS Capacitor (see Fig.7.2.2) with a channel thickness of (a)

3 nm and (b) 9 nm. We assume µ = 0, Ec = 0 in the silicon and Ec = 3 eV in

the oxide. Top figure shows the equilibrium band diagram: the solid curve

includes both the conduction band profile (dashed) and the self-consistent

potential. The lower figure shows the electron density. The thickness of the

oxide is assumed to be 2.1 nm and the calculation was done using a discrete

lattice with a = 0.3 nm. The gate voltage VG  is assumed to be 0.25V. The

dashed lines show the electron density when the voltage is applied

asymmetrically: 0.25 V on one gate, 0V on another.

(a) 3 nm wide channel (b) 9 nm wide channel
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Semiclassical method: Also shown in Fig.7.2.5 is a comparison of the electron density

with that obtained from a semiclassical approach which works like this. In a

homogeneous structure the eigenfunctions are given by

  

φα( )
exp exp expr

r
ik x

L

ik y

L

ik z

L
x

x

y

y

z

z
= [ ] [ ] [ ]

(7.2.20)

so that the electron density obtained from Eq.(7.2.1) after summing over all three
indices k k kx y z, ,{ } ≡ α  is uniform in space (Ω = L L Lx y z):

n for spin x f
k k kx y z

= ( ) −( )∑2
1

0Ω
, ,

ε µα

with
  
εα = + + +( )E

m
k k kc

c
x y z

h2
2 2 2

2
(7.2.21)

This summation can be performed following the same procedure a described in

connection with the 2-D version in Eq.(7.2.12):

  

1
2

4

8

1

1 2

0

2
2 2 2

2

3 2 2
0

Ω
f E

m
k k k

k dk

A k m k T
where A E k T

c
c

x y z
k k k

c B
c B

x y z

− + + +[ ]










=
+ [ ] ≡ −( )[ ]

∑

∫
∞

µ

π
π

µ

h

h

, ,

exp /
exp /

  

=








+ [ ]
∞
∫m k T dy y

A y
c B

2

2
12

3 2

0π πh

/

exp

so that we can write n f ED c= −( )2 3 µ (7.2.22)

where
  
f E

m k T E
k TD

c B

B
3 2

3 2

1 2
2

( )
/

/≡






 ℑ −











πh
(7.2.23)

ℑ ( ) ≡
+ −[ ]

∞
∫1 2
0

2
1/ exp

x
d

xπ
ξ ξ

ξ

This expression for the (uniform) electron density, n is only correct for a homogeneous

medium with no external potential. The semiclassical method consists of calculating the
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spatially varying electron density n(z) in the presence of a potential U(z) from a simple

extension of Eq.(7.2.22):

n f E U zD c= + −( )2 3 ( ) µ (7.2.24)

as if each point ‘z’ behaves like a homogeneous medium with a conduction band edge

located at Ec + U(z). Replacing the upper block in Fig.7.2.2 (labeled “Schrodinger”)

with this equation we obtain the semiclassical Schrodinger-Poisson solver widely used

in device simulation programs.
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7.3. Quantum vs. electrostatic capacitance

The electron density in the channel per unit area is obtained by integrating n(z)

in Eq.(7.2.13) and noting that the wavefunctions are normalized: dz zmφ ( ) 2∫  = 1:

n dz n z fs
m

D m= = −( )∫ ∑( ) 2 2 ε µ (7.3.1)

Fig.7.3.1 shows the electron density nS as a function of the gate voltage Vg applied

symmetrically to both gates.

The basic physics is illustrated in Fig.7.3.2. A positive gate voltage lowers the overall

density of states (DOS) and increases the electron density ns. As long as the

electrochemical potential µ is located below the lowest energy level, the device is in the

off-state. Once µ moves into the energy range with a non-zero DOS the device is in the

on-state. Fig.7.3.1 shows that it takes a higher threshold voltage to turn on the device

with the 3 nm channel relative to the one with the 9 nm channel. This is because of the

increase in the lowest energy level due to size quantization.

Fig.7.3.1. Electron density per unit area,

ns in a 3 nm (solid) and a 9 nm (dashed)

channel as a function of the gate voltage

Vg applied symmetrically to both gates

calculated numerically using the model

described in Section 7.2.
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Equivalent circuit: An interesting question to ask is the following: how does the

potential VC in the channel change as the gate voltage VG  is changed. It is easy to

answer this question in two extreme situations. If the channel is in the off-state, then it

behaves basically like an insulator, and the channel potential VC is equal to VG . But if

the channel is in the on-state then it behaves like the negative plate of a parallel plate

capacitor, so that the channel potential VC is equal to the source (or drain) potential

which we have assumed to be the ground. What is not obvious is the answer in

intermediate situations when the channel is neither an insulator or a conductor. The

approximate equivalent circuit shown in Fig.7.3.3 can be used to answer this question.

Let me explain where it comes from.

The channel is connected to the two gate electrodes by the familiar parallel plate

capacitors (per unit area) proportional to the effective dielectric constant ε and inversely

proportional to the distance ‘d’ between the center of the channel and the gate electrode.

C dins ≡ ε / (7.3.2)

Fig.7.3.2. A positive voltage VG  applied to the gate moves the density of

states, D(E), downwards. Since the electrochemical potential µ remains fixed,

this increases the number of occupied states and hence the number of

electrons, N.
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Of course this is just an approximate expression since the electrons in the channel are

not all located at the center as we have idealized. Also, one could raise questions about

the exact dielectric constant ε to use, since it should represent an appropriate average

over the channel and the insulator. One could take such “details” into account and try

to come up with a more accurate expression, but that would obscure the purpose of this

discussion which is to gain “insight”. To get the quantitative details right, we can

always use the numerical model described at the end of the last section. The point is that

the capacitors labeled Cins  are essentially the same capacitors that we learnt about in

freshman physics.

Fig.7.3.3. Approximate equivalent circuit representation

of the MOS capacitor.

But where does the quantum capacitance CQ come from? We have seen in the

last Section that we have to perform a simultaneous solution of two relations connecting

the electron density to the potential (see Fig.7.2.2): An electrostatic relation (Poisson),

and a quantum relation (Schrodinger). The electrostatic relation can be written as

U U q N N CL E= + −( ( ) / )2
0  (7.3.3)

where UL is the channel potential obtained from a solution to the Laplace equation

assuming zero charge, while (N - N0) tells us the extra electron density relative to the

number n0 required to keep it neutral. The quantum relation can be written as

VG

VG

Gate

Gate

       INSULATOR

CHANNEL

        INSULATOR

CQ

VG

VC
Cins

Cins

VG
C CE ins= 2
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N dE D E U f E= − −
− ∞

+ ∞
∫ ( ) ( )0 µ (7.3.4)

where D(E-U) is the density of states (per unit area) shifted by the potential U. This is a

non-linear relation and we could get some insight by linearizing it around an appropriate

point. For example, we could define a “neutral potential” U = UN, for which makes N

= N0 and keeps the channel  exactly neutral:

N dE D E U f EN0 0= − −
− ∞

+ ∞
∫ ( ) ( )µ

Any increase in U will raise the energy levels and reduce N, while a decrease in U will

lower the levels and increase N. So, for small deviations from the neutral condition, we

could write

N N C U U qQ N− ≈ −[ ]0
2/ (7.3.5)

where C q dN dUQ U UN
≡ − [ ] =

2 / (7.3.6)

is called the quantum capacitance and depends on the density of. We can substitute this

linearized relation into Eq.(7.3.3) to obtain

U U
C

C
U UL

Q

E
N= + −[ ]

  ! U
C U C U

C C
E L Q N

E Q
=

+
+

(7.3.7)

Eq.(7.3.7) is easily visualized in terms of the capacitive network shown in Fig.7.3.3. The

actual channel potential U is intermediate between the Laplace potential, UL and the

neutral potential, UN. How close it is to one or the other depends on the relative

magnitudes of the electrostatic capacitance, CE and the quantum capacitance, CQ.
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From Eqs.(7.3.4) and (7.3.6) it is straightforward to show that the quantum

capacitance CQ is proportional to the density of states averaged over a few k TB   around

µ:

C q DQ ≡ 2
0 (7.3.8)

D0 ≡ dE D E U F EN T( ) ( )− −
− ∞

+ ∞
∫ µ (7.3.9)

where F ET( )  is the thermal broadening function defined as

F E
df
dE k T

h
E

k TT
B B

( ) sec≡ − =








0 21

4 2
(7.3.10)

Fig.7.3.4 shows a sketch of the thermal function; its maximum value is 1 4/ k TB( ) while

its width is proportional to k TB ; it is straight forward to show that the area obtained by

integrating this function is equal to one, independent of k TB :   dE F ET
−∞

+∞
∫ =( ) 1. This

means that at low temperatures F ET( )  becomes very large but very narrow while

maintaining a constant area of 1: Such a function can be idealized as a delta function:

F E ET( ) ( )→ δ , which allows us to simplify the expression for the quantum

capacitance at low temeperatures

Fig.7.3.4. Plot of the

thermal broadening

function F ET( )

(Eq.(7.3.10)) with

k TB  = 0.025 eV.
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C q D E UQ N≈ = +2 ( )µ (7.3.11)

showing that it is proportional to the density of states around the electrochemical

potential µ after shifting by the neutral potential UN.

It is easy to see from the equivalent circuit in Fig.7.3.3 that

V V
C

C CC G
E

E Q
=

+
where C CE ins= 2 (7.3.12)

Devices in the off-state have zero CQ, so that VC = VG . But in the on-state, CQ is non-

zero and VC is smaller than VG . The measured capacitance C is the series combination

of the electrostatic and quantum capacitances

C
C C

C C
E Q

E Q
=

+
(7.3.13)

and is dominated by the smaller of the two.

We can get an approximate feeling for the magnitude of the quantum capacitance

CQ in the on-state, by noting that a 2-D conductor described by a parabolic dispersion

relation has a constant density of states (Table 5.2.1) :  D E m Sc( ) /= π h2, so that we

can write the quantum capacitance approximately as

  

C
q m S S

a
Q

c= =
2

2
0 4π
ε

h * /
(7.3.14)

where a0
* is given by an expression similar to that for the Bohr radius that we defined in

Chapter one (see Eq.(1.1.5)). But it is larger than the Bohr radius (= 0.053 nm) because

the effective mass ( mc) is smaller than the free electron mass (m) and the dielectric

constant (ε) is larger than that for free space (ε0):

  

a
m q

nm
m
mc c

0

2

2
0

4
0 053* .≡ = ( )π ε ε

ε
h

(7.3.15)
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The quantum capacitance is thus equal to that of a parallel plate capacitor whose plates

are separated by a0
*/ 4. Since this is usually a very small number, the quantum

capacitance in the on-state is typically well in excess of the electrostatic capacitance CE

and the measured capacitance is dominated by the latter (see Eq.(7.3.13)). But in

materials with a small effective mass, the quantum capacitance can be small enough to

have a significant effect, especially if the insulator is very thin making CE large.

Off Regime:In the off-regime, the density of states close to E = µ is negligible, and so is

the quantum capacitance CQ. Consequently the channel potential VC is essentially equal

to the gate voltage VG , so that we can write

N dE f E qV D EG= − −( )
− ∞

+ ∞
∫ 0 µ ( )

≈ − − −









− ∞

+ ∞
∫ dE

E qV
k T

D EG

B
exp ( )

µ

since E - µ - q VG  >> k TB  in the energy range where D(E) is non-zero. In this regime,

the number of electrons changes exponentially with gate voltage:

N N
qV
k T

G

B
~ exp0











so that log
.10

0 2 3
N

N
qV

k T
G

B









 ≈









 (7.3.16)

This is basically the well-known result that in the off-regime, the number of electrons

increases by a decade (a factor of 10) for every 2.3 k TB  (~ 60 meV at room

temperature) increase in the gate voltage. This relation can be verified by re-plotting

Fig.7.3.1 on a logarithmic scale and looking at the slope in the off-regime.

On-regime: In the on-regime, the electrochemical potential µ lies well inside the band of

states where D(E), and hence the quantum capacitance CQ is significant. The actual

capacitance is a series combination of the quantum and electrostatic capacitances as
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explained above. From the slope of the ns vs. Vg curve in the on-region (see Fig.7.3.1),

we deduce a capacitance of approximately 1.8 e-6 F/cm2 for the 3 nm channel. If we

equate this to 2 ε / d, we obtain d = 3.9 nm which compares well with the number

obtained by adding half the channel width (1.5 nm) to the oxide thickness (2.1 nm),

showing that the effective capacitance is largely electrostatic (rather than quantum) in

origin.
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7.4. Supplementary notes: Multiband effective mass Hamiltonian

The one-band effective mass model works very well when we have an isotropic

parabolic band that is well separated from the other bands. This is usually true of the

conduction band in wide bandgap semiconductors. But the valence band involves

multiple closely spaced bands which are strongly anisotropic and non-parabolic. Close

to the Γ  point the energy dispersion can usually be expressed in the form (A, B and C

being constants)

     
  
E k E Ak B k C k k k k k kv x y y z z x( ) ( )

r
= − ± + + +2 2 4 2 2 2 2 2 2 2 (7.4.1)

This dispersion relation can be described by a 4x4 matrix of the form (I: 4x4 identity

matrix)

  
˜ ( )h k P I T

r[ ] = − − (7.4.2)

where T

Q S R

Q R S

S R Q

R S Q

[ ] ≡

−

− −

−





















+ +

+

+

0

0

0

0

  
P E

m
k k kv x y z≡ + + +( )h2

1 2 2 2
2

γ

  
Q

m
k k kx y z≡ + −( )h2

2 2 2 2
2

2
γ

  
R

m
k k i k kx y x y≡ − −[ ] +( )h2

2
2 2

32
3 2 3γ γ

  
S

m
k i k kx y z≡ −( )h2

3

2
2 3

γ

The Luttinger parameters γ 1 , γ 2  and γ 3  are available in the literature for all common

semiconductors (see, for example, P. Lawaetz, “Valence Band Parameters in Cubic

Semiconductors”, Phys. Rev. B4, 3460 (1971)). One can argue that Eqs.(7.4.1) and

(7.4.2) are equivalent, since it can be shown using straightforward algebra that
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T Q R S I[ ] = + +2 2 2 2( ) = + + +( )B k C k k k k k k Ix y y z z x
2 4 2 2 2 2 2 2 2( )

It can be seen from Fig.7.4.1 that the eigenvalues of [h(  
r
k)] describe the two highest

valence bands (light hole and heavy hole) well very close to the Γ  point. To get better

agreement over a wider range of k-values and to include the split-off band (see

Fig.7.4.2), one often uses a three-band [h(  
r
k)] of the form

 

  

h k

P Q S R S R

P Q R S R S

R P Q Q S

R P Q S Q
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 (7.4.3)
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Fig.7.4.1. Solid lines show

the full bandstructure

obtained from the sp3s*

model described in Chapter
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model (Eq.(7.4.2)) with
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We can use either the 2-band [h(  
r
k)] in Eq.(7.4.1) or the three-band [h(  

r
k)] in

Eq.(7.4.2) to construct an effective mass equation for the valence band using the same

principle that we used for the conduction band (cf. Eq.(7.1.2), (7.1.3)). We simply

replace   
r
k with   − ∇i

r
 in the expression for h(  

r
k) to obtain a coupled differential equation

of the form

  
h k i f r E f r

r r r r
→ − ∇( )[ ] { } = { }( ) ( ) (7.4.3)

where the “wavefunction”   f r( )
r{ } now has four (or six) components. It is easy to check

that plane wave solutions of the form, 
  

f r f ik r( ) exp
r r r{ } = { } ⋅( )0  with any   

r
k  will satisfy

Eq.(7.4.2) provided f0{ } is an eigenfunction of [  h k( )
r

]

  
h k f E f

r( )[ ] { } = { }0 0 (7.4.4)

This means that the effective mass equation in Eq.(7.4.3) will generate a bandstructure

identical to that obtained from the original [  h k( )
r

].

We could use the finite difference method to convert Eq.(7.4.3) into a

Hamiltonian matrix, the same way we went from Eq.(7.1.3) to the matrix depicted in

Fig.7.1.2. In Fig.7.1.5, the unit cell matrices [Hnn]  and the bond matrices [ Hnm, n≠m]

will all be (4x4) or (6x6) matrices depending on whether we start from the 2-band

(Eq.(7.4.2)) or the 3-band (Eq.(7.4.3)) model. For example, the 2-band model leads to

matrices [Hnm] of the form

Fig.7.4.2. Solid lines show

the full bandstructure

obtained from the sp3s*

model described in Chapter

4. Dashed line shows the

dispersion obtained from a

three-band effective mass

model (Eq.(7.4.3)) with

parameters adjusted for

best fit.
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where the individual terms Pnm, Qnm etc. are obtained from the corresponding

functions   P k( )
r

,   Q k( )
r

using the same procedure that we use to obtain a one-band

effective mass Hamiltonian (see Fig.7.1.2) from the one-band   h k( )
r

 (see  Eq.(7.1.2)).

Fig.7.4.3. The multiband effective mass Hamiltonian matrix can be depicted

schematically as a 3-D network of unit cells (unrelated to the actual crystal

structure) described by Hnn[ ]  bonded to its nearest neighbors by Hnm[ ].

These matrices will be (4x4) or (6x6) depending on whether we start from the

2-band (Eq.(7.4.1)) or the 3-band (Eq.(7.4.2)) model.

The same approach is used to write down the Hnm[ ] matrices for the 3-band

model (Eq.(7.4.2)). For narrow-gap semiconductors, it is common to use a 4-band

model where the matrices Hnm[ ] are (8x8) in size. Multiband effective mass models

may not appear to represent much of a simplification relative to an atomistic model like

the sp s3 *  model. However, the simplification (numerical and even conceptual) can be

considerable for two reasons:

(a) the matrices Hnm[ ] are somewhat smaller (cf. (20x20) for the sp s3 *  model),

(b) the lattice can be much coarser and have a simpler structure (simple cubic rather

than FCC) than the real atomic lattice, resulting in a smaller overall Hamiltonian

that is also easier to visualize.

[ ]Hnn

Hnm[ ]

a
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A short example to illustrate the basic approach is given below, but as I have said earlier,

I will not discuss multiband models (or any model other than the one-band effective

mass model) any further in this book.

An example:  Fig.7.4.4 shows the energies of the four highest valence band  levels of a

GaAs quantum well sandwiched between   A Ga Asl 0 3 0 7. . barriers calculated as a

function of the well width using the two-band model assuming

for GaAs: Ev = 0 eV, γ 1  = 6.85, γ 2  = 2.1, γ 3  = 2.9

and for A  lAs:  Ev = 0.75 eV, γ 1  = 3.45, γ 2  = 0.68, γ 3  = 1.29

and interpolating linearly for the A  lAs - GaAs alloy. Fig.7.4.5 shows the dispersion

relation E(  
r
k) as a function of ky with kx  = 0  for the four highest valence subbands of

a quantum well with W = 51A.
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Fig.7.4.4. Energy of the

four highest energy levels

of a GaAs quantum well

sandwiched between

Al0.3Ga0.7As barriers (shown

in inset) as a function of the

well width (W) calculated

from a two-band effective

mass model.

W = 5.1 nm

E1

E2

Fig.7.4.5. Solid lines show the

dispersion relation E(  
r
k ) as a

function of ky with kx = 0 for

the two highest subbands of a

quantum well with W = 5.1 nm,

calculated from the two-band

effective mass model.
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Exercises

E.7.1. (a) Plot E(k) along Γ-X  and Γ-L from

  
h k E

k
mc

c
( )
r h= +

2 2

2

and compare with the plot from the sp3s* model (see Problem 4.2) over the appropriate

energy and wavevector range (cf. Fig. 5.1.2). What values of Ec and mc give the best fit?

(b) Use a one-band effective mass model to calculate the energies of the two lowest

levels of a GaAs quantum well sandwiched between   A Ga Asl 0 3 0 7. .  barriers as a

function of the well width. Assume that for GaAs: Ec = 0 eV,  mc = 0.07 m

  and for A  lAs: Ec = 1.25 eV,  mc = .15 m

and interpolate linearly to obtain Ec and mc for the A  lAs - GaAs alloy (cf. Fig.5.1.3).

(c) Use a one-band model to calculate the dispersion relation E(  
r
k) as a function of the

magnitude of the in-plane wavevector   
r
k  = { k kx y} for the two lowest subbands of a

quantum well with W = 69A, using the same parameters as in part (b) (cf. Fig.5.1.4).

E.7.2. (a) Consider the MOS capacitor shown in Fig.7.2.3 and calculate the self-

consistent conduction band profile and the electron density using a discrete lattice with a

= 0.3 nm. Assume that (1) the thickness of the oxide is 2.1 nm and the channel

thickness is 3 nm, (2) µ = 0, Ec = 0 in the silicon and Ec = 3 eV in the oxide, (3)

dielectric constant ε = 4 ε0  and mc = 0.25m everywhere, and (3) the gate voltage VG  =

0.25V. Repeat with a channel thickness of 9nm and also with the gate voltage applied

asymmetrically with 0V on one gate and 0.25V on the other gate. Compare with

Fig.7.2.5.

(b) Calculate the electron density per unit area as a function of the gate voltage (applied

symmetrically to both gates) for the structure with a 3nm channel and with a 9 nm

channel. Compare with Fig.7.3.1. Calculate the effective capacitance from the slope of

the curve in the ON-state and deduce an effective plate separation ‘d’ by equating the

capacitance to 2ε / d .


