6 / Subbands

6.1. Quantum wells, wires, dots and 'nanotubes'

6.2. Density of states (DOS)
6.3. Minimum resistance of a wire

6.4. Velocity of a (sub)band electron

In Chapter 4 we have seen that the energy levels, $\mathrm{E}_{\mathrm{b}}(\overrightarrow{\mathrm{k}})$ in a periodic solid can labeled in terms of \vec{k}, with the number of branches ' b ' equal to the number of basis functions per unit cell. Strictly speaking, this requires us to assume periodic boundary conditions in all directions so that the periodicity is preserved everywhere even at the "ends". Real solids usually have "ends" where periodicity is lost, but this is commonly ignored as a surface effect that has no influence on bulk properties. The finite size of actual solids normally leads to no observable effects, but as we scale down the size of device structures, the discreteness of energy levels becomes comparable to the thermal energy $\mathrm{k}_{\mathrm{B}} \mathrm{T}$ leading to experimentally observable effects. Our objective in this chapter is to describe the concept of subbands which is very useful in describing such "size quantization" effects. In Section 5.1 we will describe the effect of size quantization on the $\mathrm{E}(\overrightarrow{\mathrm{k}})$ relation using specific examples. We will then look at its effect on experimentally observable quantities, like the density of states (DOS), $D(E)$ in Section 5.2 and the number of subbands or modes, M(E). In Section 5.3 we will see that the maximum conductance of a wire is proportional to the number of modes around the Fermi energy $(E=\mu)$, the maximum conductance per mode being equal to the fundamental constant $G_{0} \equiv \mathrm{q}^{2} / \mathrm{h}$ (Eq.(I.1)), discussed in the introductory chapter (Section I.3). Finally in Section 5.4, I will discuss the question: What is the appropriate velocity for an electron in a periodic solid? For free electrons, the wavefunction has the form of plane waves $\sim \exp (\pm \mathrm{ikx})$ and the corresponding velocity is $\hbar \mathrm{k} / \mathrm{m}$. Electrons in a periodic solid also have wavefunctions that can be labeled with a ' k ', but they are not plane waves. So what is the quantity (if there is one!) that replaces $\hbar \mathrm{k} / \mathrm{m}$ and how do we obtain it from our knowledge of the bandstructure $E_{b}(\vec{k})$?

6.1. Quantum wells, wires, dots and 'nanotubes'

We have seen in Chapter 4 that a good way to catalog the energy levels of a homogeneous periodic solid is in terms of the wavevector $\overrightarrow{\mathrm{k}}$. How do we catalog the energy levels of a nanostructured device? As an example, consider the transistor structure discussed in Chapter one, modified for convenience to include two gate electrodes symmetrically on either side of the channel. The x-dimension (L) is getting quite short but since electrons can flow in and out at the contacts, one needs to enforce "open boundary conditions" which we will discuss in the next chapter. But it is not too wrong to treat it as a closed system assuming periodic boundary conditions, at least in the absence of bias $\left(\mathrm{V}_{\mathrm{D}}=0\right)$. In the z-direction we have tight confinement leading to observable effects beyond what one might expect on the basis of periodic boundary conditions. The y-dimension (perpendicular to the plane of the paper) is typically a few microns and could be considered large enough to ignore surface effects, but as devices get smaller this may not be possible. So how do we label the energy levels of a structure like this?

In a homogeneous solid, electrons are free to move in all three directions and the energy levels can be classified as $\mathrm{E}_{\mathrm{b}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}\right)$, where the index ' b ' refers to different bands. By contrast, the transistor structure shown above represents a quantum well where the electrons are free to move only in the $x-y$ plane. We could estimate the energy levels in this structure from our knowledge of the energy levels $\mathrm{E}_{\mathrm{b}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}\right)$ of the homogeneous solid, by modeling the z-confinement as a ring of circumference L_{z}, so that the resulting periodic boundary conditions restrict the allowed values of k_{z} to a coarse lattice given by $\mathrm{k}_{\mathrm{z}}=\mathrm{p} 2 \pi / \mathrm{L}_{\mathrm{z}}$.

$$
\mathrm{E}_{\mathrm{b}, \mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right) \approx \mathrm{E}_{\mathrm{b}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}=\mathrm{p} 2 \pi / \mathrm{L}_{\mathrm{z}}\right)
$$

where the additional index ' p ' can be called a subband index. This works quite well for ring-shaped structures like carbon nanotubes, but most low-dimensional structures involve more complicated confinement geometries and in general it takes considerably more work to compute the subband energy levels of a low-dimensional solid from the bulk bandstructure. For the transistor structure shown in Fig.6.1.1 the insulator layers in act like infinite potential walls (see Fig.1.1.3b) and we can obtain fairly accurate estimates by assuming that the resulting box restricts the allowed values of k_{z} to a coarse lattice given by $\mathrm{k}_{\mathrm{Z}}=\mathrm{p} \pi / \mathrm{L}_{\mathrm{z}}$. The energy levels can then be classified as

$$
\mathrm{E}_{\mathrm{b}, \mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right) \approx \mathrm{E}_{\mathrm{b}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}=\mathrm{p} \pi / \mathrm{L}_{\mathrm{z}}\right)
$$

As we have explained, this is only approximate, but the main point I am trying to make is that quantum wells have 1-D subbands, each having a 2-D dispersion relation, $\mathrm{E}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)$.

How small does the dimension L_{z} in order for the structure to qualify as a quantum well? Answer: when it leads to experimentally observable effects. This requires that the discrete energy levels corresponding to the quantized values of $k_{z}=p \pi / L_{z}$ be less than or comparable to the thermal energy $\mathrm{k}_{\mathrm{B}} \mathrm{T}$, since all observable effects tend to be smoothed out on this energy scale by the Fermi function. To obtain a "back-of-the envelope" estimate, let us assume that the dispersion relation $\mathrm{E}_{\mathrm{b}}(\overrightarrow{\mathrm{k}})$ in the energy range of interest is described by a parabolic relation with an effective mass, m_{c} :

$$
\begin{equation*}
\mathrm{E}(\overrightarrow{\mathrm{k}}) \approx \mathrm{E}_{\mathrm{c}}+\frac{\hbar^{2}\left(\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}\right)}{2 \mathrm{~m}_{\mathrm{c}}} \quad \quad \text { Bulk solid } \tag{6.1.1}
\end{equation*}
$$

where E_{c} and m_{c} are constants that can be determined to obtain the best fit (see Fig.6.1.2). These parameters are referred to as the conduction band edge and the conduction band effective mass respectively and are well known for all common semiconductors.

Fig.6.1.2. Solid lines show the full bandstructure obtained from the $\mathbf{s p}^{3} \mathbf{s}^{*}$ model described in Chapter 4. Dashed line shows the dispersion obtained from a one-band effective mass model (Eq.(6.1.1)) with parameters adjusted for best fit: $E_{c}=1.55 \mathrm{eV}$ and $m_{c}=0.12 \mathrm{~m}$. Actually the accepted value for the effective mass for GaAs is 0.07 m , but the $\mathbf{s p}^{3} \mathbf{s}^{*}$ model parameters are optimized to give the best fit over the entire band, and are not necessarily very accurate near the band edge.

The z-confinement then gives rise to subbands labeled by the index 'p' such that

$$
\begin{gather*}
\mathrm{E}_{\mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right) \approx \mathrm{E}_{\mathrm{c}}+\mathrm{p}^{2} \varepsilon_{\mathrm{z}}+\frac{\hbar^{2}\left(\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}\right)}{2 \mathrm{~m}_{\mathrm{c}}} \quad \text { Quantum well } \\
\varepsilon_{\mathrm{z}}=\frac{\hbar^{2} \pi^{2}}{2 \mathrm{~m}_{\mathrm{c}} \mathrm{~L}_{\mathrm{z}}^{2}}=\frac{\mathrm{m}}{\mathrm{~m}_{\mathrm{c}}}\left(\frac{10 \mathrm{~nm}}{\mathrm{~L}_{\mathrm{z}}}\right)^{2} 3.8 \mathrm{meV} \tag{6.1.2}
\end{gather*}
$$

A layer 10 nm thick would give rise to subband energies $\sim 4 \mathrm{meV}$ if the effective mass, m_{c} were equal to the free electron mass, m. Materials with smaller effective mass (like GaAs with $\mathrm{m}_{\mathrm{c}}=0.07 \mathrm{~m}$) lead to larger energy separation and hence more observable effects of size quantization.

We could take this a step further and consider structures where electrons are free to move only in the x-direction and confined in both y - and z-directions.

This would be the case if for example the width of the FET in Fig.6.1.1 in the direction perpendicular to the plane of the paper were made really small, say less than 100 nm . Such quantum wires have 2-D subbands, each having a 1-D dispersion relation which could be estimated by quantizing both the y - and z - components of the wavevector $\overrightarrow{\mathrm{k}}$:

$$
\mathrm{E}_{\mathrm{n}, \mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}\right) \approx \mathrm{E}_{\mathrm{c}}+\mathrm{n}^{2} \varepsilon_{\mathrm{y}}+\mathrm{p}^{2} \varepsilon_{\mathrm{z}}+\frac{\hbar^{2} \mathrm{k}_{\mathrm{x}}^{2}}{2 \mathrm{~m}_{\mathrm{c}}} \quad \text { Quantum wire }
$$

where ε_{y} is related to the y -dimension L_{y} by a relation similar to Eq.(6.1.2).

Finally, one could consider structures that confine electrons in all three dimensions leading to discrete levels like atoms that can be estimated from

$$
\mathrm{E}_{\mathrm{m}, \mathrm{n}, \mathrm{p}} \approx \mathrm{E}_{\mathrm{c}}+\frac{\mathrm{m}^{2} \hbar^{2} \pi^{2}}{2 \mathrm{~m}_{\mathrm{c}} \mathrm{~L}_{\mathrm{x}}^{2}}+\frac{\mathrm{n}^{2} \hbar^{2} \pi^{2}}{2 \mathrm{~m}_{\mathrm{c}} \mathrm{~L}_{\mathrm{y}}^{2}}+\frac{\mathrm{p}^{2} \hbar^{2} \pi^{2}}{2 \mathrm{~m}_{\mathrm{c}} \mathrm{~L}_{\mathrm{z}}^{2}}
$$

Quantum dot

Such quantum dot structures are often referred to as artificial atoms.

Carbon nanotubes: Carbon nanotubes provide a very good example for illustrating the concept of subbands. We have seen in Section 5.2 that the energy levels of a sheet of graphite can be found by diagonalizing the (2 x 2) matrix

$$
\mathrm{h}(\overrightarrow{\mathrm{k}})=\left[\begin{array}{ll}
0 & \mathrm{~h}_{0} \tag{6.1.3}\\
\mathrm{~h}_{0}{ }^{*} & 0
\end{array}\right]
$$

where

$$
h_{0} \equiv-t\left(1+e^{i \vec{k} \cdot \vec{a}_{1}}+e^{i \vec{k} \cdot \vec{a}_{2}}\right)=-t\left(1+2 e^{i k_{x}} \operatorname{a}^{2} \cos k_{y} b\right)
$$

The eigenvalues are given by

$$
\begin{equation*}
E= \pm\left|h_{0}\right|= \pm t \sqrt{1+4 \cos _{\mathrm{y}} \mathrm{~b} \operatorname{cosk}_{\mathrm{x}} \mathrm{a}+4 \cos ^{2} \mathrm{k}_{\mathrm{y}} \mathrm{~b}} \tag{6.1.4}
\end{equation*}
$$

(a) Direct lattice

(b) Reciprocal lattice

Fig.6.1.3. (a) Arrangement of carbon atoms on the surface of graphite.
(b) Reciprocal lattice showing Brillouin zone (shaded).

Since each unit cell has two basis functions, the total number of states is equal to $2 \mathrm{~N}, \mathrm{~N}$ being the number of unit cells. Each carbon atom contributes one electron to the piband, giving a total of 2 N electrons that fill up exactly half the states. Since the energy levels are symmetrically disposed about $\mathrm{E}=0$, this means that all states with $\mathrm{E}<0$ are occupied while all states with $\mathrm{E}>0$ are empty, or equivalently one could say that the Fermi energy is located at $\mathrm{E}=0$.

Where in the $\mathrm{k}_{\mathrm{x}}-\mathrm{k}_{\mathrm{y}}$ plane are these regions with $\mathrm{E}=0$ located? Answer: wherever $\mathrm{h}_{0}(\overrightarrow{\mathrm{k}})=0$. It is easy to see that this occurs at the six corners of the Brillouin zone:

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{ik}} \mathrm{x}_{\mathrm{x}} \mathrm{cos} \mathrm{k}_{\mathrm{y}} \mathrm{~b}=-1 / 2 \quad \mathrm{k}_{\mathrm{x}} \mathrm{a}=0, \mathrm{k}_{\mathrm{y}} \mathrm{~b}= \pm 2 \pi / 3 \\
& \mathrm{k}_{\mathrm{x}} \mathrm{a}=\pi, \quad \mathrm{k}_{\mathrm{y}} \mathrm{~b}= \pm \pi / 3
\end{aligned}
$$

These six points are special for they provide the states right around the Fermi energy and thus determine the electronic properties. They can be put in two groups of three:

$$
\begin{align*}
& \left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{~b}\right)=(0,-2 \pi / 3), \quad(-\pi,+\pi / 3), \quad(+\pi,+\pi / 3) \tag{6.1.5a}\\
& \left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{~b}\right)=(0,+2 \pi / 3), \quad(-\pi,-\pi / 3), \quad(+\pi,-\pi / 3) \tag{6.1.5b}
\end{align*}
$$

All three within a group are equivalent points since they differ by a reciprocal lattice vector. Each of the six points has one-third of a valley around it within the first Brillouin zone (shaded area in Fig.6.1.3b). But we can translate these by appropriate reciprocal lattice vectors to form two full valleys around two of these points, one from each group:

$$
\left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{~b}\right)=(0, \pm 2 \pi / 3)
$$

Once a sheet of graphite is rolled up into a nanotube, the allowed values of ' k ' are constrained by the imposition of periodic boundary conditions along the circumferential direction. Note that this periodic boundary condition is a real one imposed by the physical structure, rather than a conceptual one used to facilitate the counting of states in a large structure whose exact boundary conditions are unimportant. Defining a circumferential vector

$$
\begin{equation*}
\overrightarrow{\mathrm{c}}=\mathrm{m} \overrightarrow{\mathrm{a}}_{1}+\mathrm{n} \overrightarrow{\mathrm{a}}_{2}=\hat{\mathrm{x}}(\mathrm{~m}+\mathrm{n}) \mathrm{a}+\hat{\mathrm{y}}(\mathrm{~m}-\mathrm{n}) \mathrm{b} \tag{6.1.6}
\end{equation*}
$$

that joins two equivalent points on the x-y plane that connect to each other on being rolled up, we can express the requirement of periodic boundary condition as

$$
\begin{equation*}
\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{c}} \equiv \mathrm{k}_{\mathrm{c}}|\mathrm{c}|=\mathrm{k}_{\mathrm{x}} \mathrm{a}(\mathrm{~m}+\mathrm{n})+\mathrm{k}_{\mathrm{y}} \mathrm{~b}(\mathrm{~m}-\mathrm{n})=2 \pi v \tag{6.1.7}
\end{equation*}
$$

which defines a series of parallel lines, each corresponding to a different integer value for v (Fig.6.1.4). We can draw a one-dimensional dispersion relation along any of these lines, giving us a set of dispersion relations $\mathrm{E}_{\mathrm{v}}(\mathrm{k})$, one for each subband v.

Whether the resulting subband dispersion relations will show an energy gap or not depends on whether one of the lines defined by Eq.(6.1.7) passes through the center of one of the valleys

$$
\left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{~b}\right)=(0, \pm 2 \pi / 3)
$$

where the energy levels lie at $\mathrm{E}=0$. It is easy to see from Eq.(6.1.7) that in order for the line to pass through $\mathrm{k}_{\mathrm{x}} \mathrm{a}=0, \mathrm{k}_{\mathrm{y}} \mathrm{b}=2 \pi / 3$ we must have

$$
(\mathrm{m}-\mathrm{n}) / 3=v
$$

Since v is an integer this can only happen if (m-n) is a multiple of 3 : only nanotubes satisfying this condition are metallic.

Fig.6.1.4. Reciprocal lattice of graphite showing straight lines $k_{c}|c|=2 \pi v$ representing the constraint imposed by the nanotube periodic boundary conditions.

Zigzag and armchair nanotubes: Consider a specific example: a nanotube with a circumferential vector along the y-direction,

$$
\overrightarrow{\mathrm{c}}=\hat{\mathrm{y}} 2 \mathrm{bm}
$$

which is called a zigzag nanotube, because the edge (after rolling) looks zigzag:

Fig.6.1.5.

The periodic boundary condition then requires the allowed values of k to lie parallel to the k_{x} - axis described by (length of circumference: 2 bm)

$$
\begin{equation*}
\mathrm{k}_{\mathrm{y}} 2 \mathrm{bm}=2 \pi v \rightarrow \mathrm{k}_{\mathrm{y}}=\frac{2 \pi}{3 \mathrm{~b}} \frac{3 v}{2 \mathrm{~m}} \tag{6.1.8}
\end{equation*}
$$

as shown in Fig.6.1.6a.
(a) $\overrightarrow{\mathrm{c}}=\hat{\mathrm{y}} 2 \mathrm{bm}$

(b) $\overrightarrow{\mathrm{c}}=\hat{\mathrm{x}} 2 \mathrm{am}$

Fig.6.1.6. (a) Zigzag nanotube obtained by rolling a sheet of graphite along the y-axis with $\vec{c}=\hat{y} 2 \mathrm{bm}$ has its allowed k-values constrained to lie along a set of lines parallel to the k_{x} - axis as shown. One of the lines will pass through ($0,2 \pi / 3 \mathrm{~b}$) only if ' \boldsymbol{m} ' is a multiple of three. (b) Armchair nanotube obtained by rolling graphite along the \mathbf{x}-axis with $\overrightarrow{\mathrm{c}}=\hat{\mathrm{x}} 2 \mathrm{am}$ has its \mathbf{k}-values constrained to lie along lines parallel to the k_{y}-axis as shown. One of the lines will always pass through $(0,2 \pi / 3 b)$ regardless of ' m '.

Fig.6.1.7 shows the two "lowest" subbands corresponding to values of the subband index v that give rise to the smallest gaps around $\mathrm{E}=0$. If $\mathrm{m}=66$ (multiple of three), one of the subbands will pass through $\left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{b}\right)=(0, \pm 2 \pi / 3)$ and the dispersion relation for the lowest subbands look as shown in Fig.6.1.7a, with no gap in the energy spectrum. But if $\mathrm{m}=65$ (not a multiple of three), then no subband will pass through $\left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{b}\right)=(0, \pm 2 \pi / 3)$ giving rise to a gap in the energy spectrum as shown in Fig.6.1.7b.

$m=65$
$\mathbf{D}=5.02 \mathrm{~nm}$

Fig.6.1.7. Dispersion relation for the two "lowest" subbands of a zigzag nanotube (a) with $m=66$ showing metallic character (no gap in energy spectrum) (b) with $m=65$ showing semiconducting character (gap in energy spectrum).

A nanotube with a circumferential vector along the x -direction, $\overrightarrow{\mathrm{c}}=\hat{\mathrm{x}} 2 \mathrm{am}$ is called an armchair nanotube, because the edge (after rolling) look like an armchair (this requires some imagination!) :

Fig.6.1.8

The periodic boundary condition then requires the allowed values of k to lie parallel to the k_{y} - axis described by (length of circumference: 2 bm)

$$
\begin{equation*}
\mathrm{k}_{\mathrm{x}} 2 \mathrm{am}=2 \pi \mathrm{v} \rightarrow \mathrm{k}_{\mathrm{x}}=\frac{2 \pi v}{2 \mathrm{ma}} \tag{6.1.9}
\end{equation*}
$$

as shown in Fig.6.1.6b. The subband with $v=0$ will always pass through the special point $\left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{b}\right)=(0, \pm 2 \pi / 3)$ giving rise to dispersion relations that look metallic (Fig.6.1.7a) regardless of the value of ' m '.

A useful approximation:

Fig.6.1.9. Energy dispersion relation plotted as a function of $k_{y} b$ along the line $\mathrm{k}_{\mathrm{x}} \mathrm{a}=0$. Solid line is obtained from (Eq. (6.1.11)), while x's are obtained from
Eq.(6.1.4).

Electrical conduction is determined by the states around the Fermi energy and so it is useful to develop an approximate relation that describe the regions of the E-k plot around $\mathrm{E}=0$. This can be done by replacing the expression for $h_{0}(\vec{k})=-t\left(1+2 \mathrm{e}^{i k_{x}}{ }^{\mathrm{a}} \operatorname{cosk}_{\mathrm{y}} \mathrm{b}\right)$ (see eq.(6.1.2)) with a Taylor expansion around $\left(\mathrm{k}_{\mathrm{x}} \mathrm{a}, \mathrm{k}_{\mathrm{y}} \mathrm{b}\right)=(0, \pm 2 \pi / 3)$ where the energy gap is zero (note that $\mathrm{h}_{0}=0$ at these points):

$$
\mathrm{h}_{0} \approx \mathrm{k}_{\mathrm{x}}\left[\frac{\partial \mathrm{~h}_{0}}{\partial \mathrm{k}_{\mathrm{x}}}\right]_{\mathrm{k}_{\mathrm{x}}=0, \mathrm{k}_{\mathrm{y}} \mathrm{~b}= \pm 2 \pi / 3}+\left(\mathrm{k}_{\mathrm{y}} \mp \frac{2 \pi}{3}\right)\left[\frac{\partial \mathrm{h}_{0}}{\partial \mathrm{k}_{\mathrm{y}}}\right]_{\mathrm{k}_{\mathrm{x}} \mathrm{a}=0, \mathrm{k}_{\mathrm{y}} \mathrm{~b}= \pm 2 \pi / 3}
$$

It is straightforward to evaluate the partial derivatives:

$$
\begin{aligned}
& \frac{\partial h_{0}}{\partial k_{x}}=\left[-2 i a t e^{i k_{x} a^{a}} \cos k_{y} b\right]_{k_{x} a=0, k_{y} b= \pm 2 \pi / 3}=i a t=i 3 a_{0} t / 2 \\
& \frac{\partial h_{0}}{\partial k_{y}}=\left[2 b t e^{i k_{x} a} \sin k_{y} b\right]_{k_{x} a=0, k_{y} b= \pm 2 \pi / 3}= \pm b t \sqrt{3}= \pm 3 a_{0} t / 2
\end{aligned}
$$

so that we can write

$$
\begin{array}{r}
\mathrm{h}_{0}(\overrightarrow{\mathrm{k}}) \approx \mathrm{i} \frac{3 \mathrm{a}_{0} \mathrm{t}}{2}\left(\mathrm{k}_{\mathrm{x}} \mp \mathrm{i} \beta_{\mathrm{y}}\right) \\
\beta_{\mathrm{y}} \equiv \mathrm{k}_{\mathrm{y}} \mp(2 \pi / 3) \tag{6.1.10}
\end{array}
$$

where

The corresponding energy dispersion relation (cf. Eq.(6.1.3)) can be written as

$$
\begin{equation*}
\mathrm{E}(\overrightarrow{\mathrm{k}})= \pm\left|\mathrm{h}_{0}\right|= \pm \frac{3 \mathrm{ta}_{0}}{2} \sqrt{\mathrm{k}_{\mathrm{x}}^{2}+\beta_{\mathrm{y}}^{2}} \tag{6.1.11}
\end{equation*}
$$

This simplified approximate relation (obtained from a Taylor expansion of Eq.(6.1.3) around one of the two valleys) shows clearly that the constant energy contours are circles isotropically disposed around the center of each valley, $(0,+2 \pi / 3 b)$ or ($0,-2 \pi / 3 b$).

How large is the energy gap of a semiconducting nanotube? The answer is independent of the specific type of nanotube, as long as (m-n) is not a multiple of 3 so that the gap is non-zero. But it is easiest to derive an expression for the energy gap if we consider a zigzag nanotube. From Eqs.(6.1.6) and (6.1.9) we can write

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{k}_{\mathrm{x}}\right)= \pm \frac{3 \mathrm{ta}_{0}}{2} \sqrt{\mathrm{k}_{\mathrm{x}}^{2}+\left(\frac{2 \pi}{3 \mathrm{~b}}\left[\frac{3 \mathrm{v}}{2 \mathrm{~m}}-1\right]\right)^{2}} \tag{6.1.12}
\end{equation*}
$$

so that the energy gap for subband ' v ' can be written as the difference in the energies between the ' + ' and '-' branches at $\mathrm{k}_{\mathrm{x}}=0$:

$$
\mathrm{E}_{\mathrm{g}, v}=3 \operatorname{ta}_{0} \frac{2 \pi}{2 \mathrm{mb}}\left[v-\frac{2 \mathrm{~m}}{3}\right]
$$

This has a minimum value of zero corresponding to $v=2 \mathrm{~m} / 3$. But if ' m ' is not a multiple of ' 3 ' then the minimum value of $(v-2 m / 3)$ is equal to $1 / 3$. This means that the minimum energy gap is then given by

$$
\begin{equation*}
\mathrm{E}_{\mathrm{g}}=\operatorname{ta}_{0} \frac{2 \pi}{2 \mathrm{mb}}=\frac{2 \mathrm{ta}_{0}}{\mathrm{~d}} \approx \frac{0.8 \mathrm{eV}}{\mathrm{~d}(\text { in } \mathrm{nm})} \tag{6.1.13}
\end{equation*}
$$

where ' d ' is the diameter of the nanotube, so that ' $\pi \mathrm{d}$ ' is equal to the circumference ' 2 mb '.

6.2. Density of states

In the last section we discussed how size quantization effects modify the $E(\vec{k})$ relationship leading to the formation of subbands. However, it should be noted that such effects do not appear suddenly as the dimensions of a solid are reduced. It is not as if a bulk solid abruptly transitions into a quantum well. The effect of reduced dimensions shows up gradually in experimental measurements and this can be appreciated by looking at the density of states (DOS), $\mathrm{D}(\mathrm{E})$ which is reflected in conductance measurements.

The DOS tells us the number of energy eigenstates per unit energy range and it clearly depends on the $\mathrm{E}(\overrightarrow{\mathrm{k}})$ relationship. To be specific, let us assume for the moment that we are near one of the valleys in the conduction band where the energy levels can be described by a parabolic relation with some effective mass, m_{c} :

$$
\begin{equation*}
\mathrm{E}(\overrightarrow{\mathrm{k}})=\mathrm{E}_{\mathrm{c}}+\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}_{\mathrm{c}}} \tag{6.2.1}
\end{equation*}
$$

What is the corresponding DOS if the vector $\overrightarrow{\mathrm{k}}$ is constrained to 1-D (quantum wire), 2-D (quantum well) or 3-D (bulk solid)? The standard procedure for counting states is to assume a rectangular box of size $\mathrm{L}_{\mathrm{x}} \mathrm{L}_{\mathrm{y}} \mathrm{L}_{\mathrm{z}}$ with periodic boundary conditions (see Fig.2.1.4) in all three dimensions (cf. Eq.(2.1.17)):

$$
\begin{equation*}
\mathrm{k}_{\mathrm{x}}=\frac{2 \pi}{\mathrm{~L}_{\mathrm{x}}} v_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}=\frac{2 \pi}{\mathrm{~L}_{\mathrm{y}}} v_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}=\frac{2 \pi}{\mathrm{~L}_{\mathrm{z}}} v_{\mathrm{z}} \quad\left(v_{\mathrm{x}}, v_{\mathrm{y}}, v_{\mathrm{z}}: \text { integers }\right) \tag{6.2.2}
\end{equation*}
$$

We then assume that the box is so large that the allowed k -values are effectively continuous and we can replace any summations over these indices with integrals:

$$
\begin{equation*}
\sum_{\mathrm{k}_{\mathrm{x}}} \rightarrow \int_{-\infty}^{+\infty} \frac{d \mathrm{k}_{\mathrm{x}}}{2 \pi / \mathrm{L}_{\mathrm{x}}}, \sum_{\mathrm{k}_{\mathrm{y}}} \rightarrow \int_{-\infty}^{+\infty} \frac{d \mathrm{k}_{\mathrm{y}}}{2 \pi / \mathrm{L}_{\mathrm{y}}}, \sum_{\mathrm{k}_{\mathrm{z}}} \rightarrow \int_{-\infty}^{+\infty} \frac{\mathrm{dk}_{\mathrm{z}}}{2 \pi / \mathrm{L}_{\mathrm{z}}} \tag{6.2.3}
\end{equation*}
$$

Table 6.2.1: Summary of DOS calculation in 1-D, 2-D and 3-D for parabolic isotropic dispersion relation (Eq.(6.2.1)).

Plots assume $\mathrm{m}_{\mathrm{c}}=\mathrm{m}$ (free electron mass)
and results are for one spin only.

1-D
$N(k)=\quad \frac{L}{2 \pi} 2 k=\frac{k L}{\pi}$
$N(E)=\frac{L\left[2 m_{c}\left(E-E_{c}\right)\right]^{1 / 2}}{\pi \hbar}$

$$
\frac{\mathrm{S} 2 \mathrm{~m}_{\mathrm{c}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}{4 \pi \hbar^{2}}
$$

$\frac{\Omega\left[2 \mathrm{~m}_{\mathrm{c}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)\right]^{3 / 2}}{6 \pi^{2} \hbar^{3}}$
$D(E)=\quad \frac{\mathrm{m}_{\mathrm{c}} \mathrm{L}}{\pi \hbar}\left[\frac{1}{2 \mathrm{~m}_{\mathrm{c}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}\right]^{1 / 2}$
$\frac{S \mathrm{~m}_{\mathrm{c}}}{2 \pi \hbar^{2}}$
$\frac{\Omega m_{c}}{2 \pi^{2} \hbar^{3}}\left[2 m_{c}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)\right]^{1 / 2}$

In other words, the allowed states in k-space are distributed with a density of (L/2 π) per unit ' k ' in each k-dimension. Hence the total number of allowed states, $N(k)$ upto a certain maximum value, k is given by

$$
\frac{\mathrm{L}}{2 \pi} 2 \mathrm{k}=\frac{\mathrm{kL}}{\pi}
$$

$$
\text { 1-D with } L \equiv L_{x}
$$

$$
\begin{aligned}
\frac{L_{x} L_{y}}{4 \pi^{2}} \pi k^{2}=\frac{k^{2} S}{4 \pi} & \text { 2-D with } S \equiv L_{x} L_{y} \\
\frac{L_{x} L_{y} L_{z}}{8 \pi^{3}} \frac{4 \pi k^{3}}{3}=\frac{k^{3} \Omega}{6 \pi^{2}} & \text { 3-D with } \Omega \equiv L_{x} L_{y} L_{z}
\end{aligned}
$$

Using the dispersion relation in Eq.(6.2.1) we can convert $N(k)$ into $N(E)$ which tells us the total number of states having an energy less than E . The derivative of this function gives us the density of states (DOS):

$$
\begin{equation*}
\mathrm{D}(\mathrm{E})=\frac{\mathrm{d}}{\mathrm{dE}} \mathrm{~N}(\mathrm{E}) \tag{6.2.4}
\end{equation*}
$$

Fig. 6.2.1. Density of states, $D(E)$ for a 2-D box calculated from Eq.(6.2.5) (2D with quantized subbands) and compared with that obtained from the 3-D relation in Eq.(6.2.6). As the wdth L_{z} of the box is increased from 5 nm to 20 nm , the DOS approaches the 3 D result (the effective mass m_{c} is assumed equal to the free electron mass, m)

The results for 1-D, 2-D and 3-D are summarized in Table 6.2.1. It can be seen that a parabolic $E(\vec{k})$ relation (Eq.(6.2.1)) gives rise to a density of states that varies as $E^{-1 / 2}$ in 1-D , E^{0} (constant) in 2-D and $\mathrm{E}^{+1 / 2}$ in 3-D. Note, however, that the 1-D or 2-D results do not give us the total DOS for a quantum wire or a quantum well. They give us the DOS only for one subband of a quantum wire or a quantum well. We have to sum
over all subbands to obtain the full DOS. For example, if a quantum well has subbands 'p' given by (see Eq.(6.1.1))

$$
\mathrm{E}_{\mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right) \approx \mathrm{E}_{\mathrm{c}}+\mathrm{p}^{2} \varepsilon_{\mathrm{z}}+\frac{\hbar^{2}\left(\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}\right)}{2 \mathrm{~m}_{\mathrm{c}}}
$$

then the DOS would look like a superposition of many 2-D DOS:

$$
\begin{equation*}
\mathrm{D}(\mathrm{E})=\frac{\mathrm{m}_{\mathrm{c}} \mathrm{~S}}{2 \pi \hbar^{2}} \sum_{\mathrm{p}} \vartheta\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}-\mathrm{p}^{2} \varepsilon_{\mathrm{z}}\right) \tag{6.2.5}
\end{equation*}
$$

Fig.6.2.1 shows the density of states calculated from Eq.(6.2.5) with $\varepsilon_{\mathrm{z}}=\pi^{2} \hbar^{2} / 2 \mathrm{~m}_{\mathrm{c}} \mathrm{L}_{\mathrm{z}}{ }^{2}$ as given in Eq.(6.1.1). It is apparent that as the width L_{z} is increased from 5 nm to 20 nm , the DOS approaches the result obtained from the 3-D DOS with the volume Ω set equal to SL_{z} :

$$
\begin{equation*}
D_{3 D}(E)=\frac{\mathrm{Sm}_{c}}{2 \pi^{2} \hbar^{3}}\left[2 m_{c}\left(E-E_{c}\right)\right]^{1 / 2} L_{z} \tag{6.2.6}
\end{equation*}
$$

From graphite to a nanotube: The evolution of the DOS from a sheet of graphite to a nanotube also provides an instructive example of how size quantization effects arise as the dimensions are reduced. For a sheet of graphite we can write the $E(\vec{k})$ relation for each of the two valleys centered at $\left(k_{x} a, k_{y} b\right)=(0, \pm 2 \pi / 3)$ approximately as (see Eq.(6.1.9), $a=3 a_{0} / 2$)

$$
\begin{equation*}
\mathrm{E}(\overrightarrow{\mathrm{k}})= \pm \frac{3 \mathrm{ta}_{0}}{2} \sqrt{\mathrm{k}_{\mathrm{x}}^{2}+\beta_{\mathrm{y}}^{2}}= \pm \mathrm{ta}|\overrightarrow{\mathrm{k}}| \tag{6.2.7}
\end{equation*}
$$

As we have seen, the energy subbands for a zigzag nanotube are given by (see Eq.(6.1.10))

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{k}_{\mathrm{x}}\right)= \pm \operatorname{ta} \sqrt{\mathrm{k}_{\mathrm{v}}^{2}+\mathrm{k}_{\mathrm{x}}^{2}}= \pm \sqrt{\mathrm{E}_{\mathrm{v}}^{2}+\left(\mathrm{tak}_{\mathrm{x}}\right)^{2}} \tag{6.2.8}
\end{equation*}
$$

where

$$
\mathrm{k}_{v} \equiv \frac{2 \pi}{3 \mathrm{~b}}\left[\frac{3 \mathrm{v}}{2 \mathrm{~m}}-1\right] \quad \text { and } \quad \mathrm{E}_{v} \equiv \quad \mathrm{ta}_{\mathrm{v}}
$$

In calculating $\mathrm{D}(\mathrm{E})$ the steps are similar to what we did in Table 6.2.1, though the details are somewhat different because the dispersion relation is different (Eqs.(6.2.7), (6.2.8)), as summarized in Table 6.2.2. Fig.6.2.2 compares the density of states for a zigzag nanotube of length 'L" and diameter 'd' (note: circumference $=\pi d=2 \mathrm{mb}$)

$$
\begin{equation*}
\mathrm{D}_{\mathrm{ZNT}}(\mathrm{E})=\sum_{v} \frac{2 \mathrm{~L}}{\pi \mathrm{at}} \frac{\mathrm{E}}{\sqrt{\mathrm{E}^{2}-\mathrm{E}_{\mathrm{v}}{ }^{2}}} \quad \text { with } \quad \mathrm{E}_{v} \equiv \frac{2 \mathrm{at}}{\mathrm{~d}}\left[v-\frac{2 \mathrm{~m}}{3}\right] \tag{6.2.9}
\end{equation*}
$$

with the density of states for a graphite sheet of area ' $\pi \mathrm{Ld}$ ':

$$
\begin{equation*}
\mathrm{D}_{\mathrm{G}}(\mathrm{E})=\quad \frac{\mathrm{Ld}}{\mathrm{a}^{2} \mathrm{t}^{2}}|\mathrm{E}| \tag{6.2.10}
\end{equation*}
$$

for (a) a nanotube with $\mathrm{m}=200$ (corresponding to $\mathrm{d}=15.4 \mathrm{~nm}$) and (b) a nanotube with $\mathrm{m}=800(\mathrm{~d}=61.7 \mathrm{~nm})$.

Table 6.2.2: Summary of DOS per spin per valley calculation for

$$
\begin{array}{lc}
\begin{array}{c}
\text { Graphite } \\
\text { Eq.(6.2.7) }
\end{array} & \begin{array}{c}
\text { Zigzag nanotube } \\
\text { Eq.(6.2.8) }
\end{array} \\
\mathrm{N}(\mathrm{k})= & \frac{\mathrm{S}}{4 \pi} \mathrm{k}^{2}
\end{array}{\frac{\mathrm{~L}}{\pi} \mathrm{k}_{\mathrm{x}}}_{\pi}^{\mathrm{N}(\mathrm{E})=} \begin{array}{lc}
\mathrm{SE}^{2} \\
4 \pi \mathrm{a}^{2} \mathrm{t}^{2} & \sum_{v} \frac{\mathrm{~L}}{\pi \mathrm{at}} \sqrt{\mathrm{E}^{2}-\mathrm{E}_{\mathrm{v}}^{2}} \\
\mathrm{D}(\mathrm{E})= & \frac{\mathrm{SE}}{2 \pi \mathrm{a}^{2} \mathrm{t}^{2}}
\end{array}
$$

It is apparent that the smaller nanotube has a DOS that is distinctly different from graphite. But the larger nanotube is less distinguishable, especially if we recall that experimental observations are typically convolved with the thermal broadening function which has a width of $\sim \mathrm{k}_{\mathrm{B}} \mathrm{T}$ (see Eq.(I.3.8)) $\sim 0.026 \mathrm{eV}$ at room temperature.

It is easy to see analytically that the DOS for zigzag nanotubes with the summation index v replaced by an integral (cf. Eq.(6.2.9))

$$
\begin{aligned}
\mathrm{D}_{\mathrm{ZNT}}(\mathrm{E}) \approx & \int 2 \mathrm{~d} v \frac{2 \mathrm{~L}}{\pi \mathrm{at}} \frac{|\mathrm{E}|}{\sqrt{\mathrm{E}^{2}-\mathrm{E}_{v}^{2}}} \quad \text { with } \quad \mathrm{dE}_{v} \equiv \frac{2 \mathrm{at}}{\mathrm{~d}} \mathrm{~d} v \\
& =\int_{0}^{\mathrm{E}} \mathrm{dE} \\
v & \frac{2 \mathrm{Ld}}{\pi \mathrm{a}^{2} \mathrm{t}^{2}} \frac{|\mathrm{E}|}{\sqrt{\mathrm{E}^{2}-\mathrm{E}_{v}^{2}}}=\frac{\mathrm{Ld}}{\mathrm{a}^{2} \mathrm{t}^{2}}|\mathrm{E}|
\end{aligned}
$$

becomes identical to the DOS for graphite (cf. Eq.(6.2.10)).

Anisotropic dispersion relation: We have used a few examples to illustrate the procedure for convering an $\mathrm{E}(\overrightarrow{\mathrm{k}})$ relation to a density of states, $\mathrm{D}(\mathrm{E})$. This procedure (see Tables 6.2 .1 and 6.2 .2) work well when the dispersion relation, $E(\vec{k})$ is isotropic. But the details get more complicated if the relation is anisotropic. For example, silicon has six separate conduction band valleys, each of which is ellipsoidal:
$\mathrm{E}=\mathrm{E}_{\mathrm{c}}+\frac{\hbar^{2} \mathrm{k}_{\mathrm{x}}^{2}}{2 \mathrm{~m}_{\mathrm{xx}}}+\frac{\hbar^{2} \mathrm{k}_{\mathrm{y}}^{2}}{2 \mathrm{~m}_{\mathrm{yy}}}+\frac{\hbar^{2} \mathrm{k}_{\mathrm{z}}^{2}}{2 \mathrm{~m}_{\mathrm{zz}}}$

For a given energy E, the constant energy contour looks like an ellipsoid whose major axes are given by $\sqrt{2 \mathrm{~m}_{\mathrm{xx}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)} / \hbar, \sqrt{2 \mathrm{~m}_{\mathrm{yy}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)} / \hbar$ and $\sqrt{2 \mathrm{~m}_{\mathrm{zz}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)} / \hbar$. The volume of this ellipsoid is

$$
\frac{4 \pi}{3} \frac{\sqrt{2 \mathrm{~m}_{\mathrm{xx}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar} \frac{\sqrt{2 \mathrm{~m}_{\mathrm{yy}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar} \frac{\sqrt{2 \mathrm{~m}_{\mathrm{zz}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar}
$$

so that $\mathrm{N}(\mathrm{E})=\frac{\Omega}{8 \pi^{3}} \frac{4 \pi}{3} \frac{\sqrt{2 \mathrm{~m}_{\mathrm{xx}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar} \frac{\sqrt{2 \mathrm{~m}_{\mathrm{yy}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar} \frac{\sqrt{2 \mathrm{~m}_{\mathrm{zz}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar}$
and $\quad \mathrm{D}(\mathrm{E}) \equiv \frac{\mathrm{d}}{\mathrm{dE}} \mathrm{N}(\mathrm{E})=\frac{\Omega}{2 \pi^{2} \hbar^{3}} \sqrt{2 \mathrm{~m}_{\mathrm{xx}} \mathrm{m}_{\mathrm{yy}} \mathrm{m}_{\mathrm{zz}}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}$
which reduces to the earlier result (see Table 6.2.1) if the mass is isotropic.

Formal expression for DOS: In general if we have a system with eigenstates labeled by an index ' α ', then we can write the total number of states, $\mathrm{N}_{\mathrm{T}}(\mathrm{E})$ with energy less than E as

$$
\begin{equation*}
\mathrm{N}_{\mathrm{T}}(\mathrm{E})=\sum_{\alpha} \vartheta\left(\mathrm{E}-\varepsilon_{\alpha}\right) \tag{6.2.13}
\end{equation*}
$$

where $\vartheta(\mathrm{E})$ denotes the unit step function which is equal to zero for $\mathrm{E}<0$, and equal to one for $\mathrm{E}>0$. The derivative of the unit step function is a delta function, so that

$$
\begin{equation*}
\mathrm{D}(\mathrm{E}) \equiv \frac{\mathrm{d}}{\mathrm{dE}} \mathrm{~N}_{\mathrm{T}}(\mathrm{E})=\sum_{\alpha} \delta\left(\mathrm{E}-\varepsilon_{\alpha}\right) \tag{6.2.14}
\end{equation*}
$$

This expression represents a sequence of spikes rather than a continuous function. Formally we can obtain a continuous DOS from Eq.(6.2.14) by letting the size of the system get very large and replacing the summation by an integral as we have been doing. For example, if

$$
\mathrm{E}(\overrightarrow{\mathrm{k}})=\mathrm{E}_{\mathrm{c}}+\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}^{*}}
$$

(same as (6.2.1))
then $\quad \mathrm{D}(\mathrm{E})=\sum_{\overrightarrow{\mathrm{k}}} \delta\left(\mathrm{E}-\varepsilon_{\vec{k}}\right)$

$$
=\sum_{\mathrm{k}_{\mathrm{x}}} \sum_{\mathrm{k}_{\mathrm{y}}} \sum_{\mathrm{k}_{\mathrm{z}}} \delta\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}-\frac{\hbar^{2}\left(\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}\right)}{2 \mathrm{~m}^{*}}\right)
$$

where $\mathrm{k}_{\mathrm{x}}=\frac{2 \pi}{\mathrm{~L}_{\mathrm{x}}} v_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}=\frac{2 \pi}{\mathrm{~L}_{\mathrm{y}}} v_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}=\frac{2 \pi}{\mathrm{~L}_{\mathrm{z}}} v_{\mathrm{z}} \quad\left(\mathrm{v}_{\mathrm{x}}, v_{\mathrm{y}}, v_{\mathrm{z}}\right.$: integers $)$
(same as (6.2.2))

We then let the volume get very large and replace the summations over these indices with integrals:

$$
\sum_{\mathrm{k}_{\mathrm{x}}} \rightarrow \int_{-\infty}^{+\infty} \frac{\mathrm{dk}_{\mathrm{x}}}{2 \pi / \mathrm{L}_{\mathrm{x}}}, \sum_{\mathrm{k}_{\mathrm{y}}} \rightarrow \int_{-\infty}^{+\infty} \frac{\mathrm{dk}_{\mathrm{y}}}{2 \pi / \mathrm{L}_{\mathrm{y}}}, \sum_{\mathrm{k}_{\mathrm{z}}} \rightarrow \int_{-\infty}^{+\infty} \frac{\mathrm{dk}_{\mathrm{z}}}{2 \pi / \mathrm{L}_{\mathrm{z}}} \quad \text { (same as (6.2.3)) }
$$

$$
\begin{aligned}
\mathrm{D}(\mathrm{E})= & \frac{\Omega}{8 \pi^{3}} \int_{0}^{+\infty} \mathrm{dk}_{\mathrm{x}} \mathrm{dk}_{\mathrm{y}} \mathrm{dk}_{\mathrm{z}} \delta\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}-\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}^{*}}\right) \\
= & \frac{\Omega}{8 \pi^{3}} \int_{0}^{+\infty} 4 \pi \mathrm{k}^{2} \mathrm{dk} \delta\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}-\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}^{*}}\right) \\
& =\frac{\Omega}{2 \pi^{2}} \int_{0}^{+\infty} \frac{\mathrm{m}^{*} \mathrm{dE}}{\hbar^{2}} \frac{\sqrt{2 \mathrm{~m}^{*}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)}}{\hbar} \delta\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}-\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}^{*}}\right) \\
& =\frac{\Omega \mathrm{m}^{*}}{2 \pi^{2} \hbar^{3}}\left[2 \mathrm{~m}^{*}\left(\mathrm{E}-\mathrm{E}_{\mathrm{c}}\right)\right]^{1 / 2}
\end{aligned}
$$

as we had obtained earlier (cf. Table 6.2.1, 3-D). This procedure is mathematically a little more involved than the previous procedure and requires integrals over delta functions.

But the real value of the formal expression in Eq.(6.2.14) is that it is generally valid regardless of the $E(\vec{k})$ relation or whether such a relation even exists. Of course, in general it may not be easy to replace the summation by an integral, since the separation between energy levels may not follow a simple analytical prescription like Eq.(6.2.2). But we can still calculate a continuous DOS from Eq.(6.2.14) by broadening each spike into a Lorentzian (see Eq.(1.3.2))

$$
\begin{equation*}
\delta\left(\mathrm{E}-\varepsilon_{\alpha}\right) \rightarrow \frac{\gamma / 2 \pi}{\left(\mathrm{E}-\varepsilon_{\alpha}\right)^{2}+(\gamma / 2)^{2}} \tag{6.2.15}
\end{equation*}
$$

The DOS will look continuous if the individual energies ε_{α} are spaced closely compared to the broadening γ, which is usually true for large systems.

Separable problems: An interesting result that can be proved using Eq.(6.2.14) is that if the eigenvalue problem is separable, then the overall density of states is given by the convolution of the individual densities. For example, suppose we have a 2-D problem that separates into a x-and y-components (see Eq.(2.3.6)) such that the overall energies are given by the sum of the x-energy and the y-energy:

$$
\begin{equation*}
\varepsilon(\mathrm{n}, \mathrm{~m})=\varepsilon_{\mathrm{x}}(\mathrm{n})+\varepsilon_{\mathrm{y}}(\mathrm{~m}) \tag{6.2.16}
\end{equation*}
$$

We could define a x-DOS and a y-DOS

$$
\begin{align*}
D_{x}(E)= & \sum_{n} \delta\left[E-\varepsilon_{x}(n)\right] \tag{6.2.17a}\\
\text { and } & \quad D_{y}(E)=\sum_{m} \delta\left[E-\varepsilon_{y}(m)\right] \tag{6.2.17b}
\end{align*}
$$

and it is straightforward to show that the total DOS

$$
\begin{equation*}
\mathrm{D}(\mathrm{E})=\sum_{\mathrm{n}} \sum_{\mathrm{m}} \delta\left[\mathrm{E}-\varepsilon_{\mathrm{x}}(\mathrm{n})-\varepsilon_{\mathrm{y}}(\mathrm{~m})\right] \tag{6.2.17c}
\end{equation*}
$$

can be written as a convolution product of the x-DOS and the y-DOS:

$$
\begin{equation*}
\mathrm{D}(\mathrm{E})=\int_{-\infty}^{+\infty} \mathrm{dE} \mathrm{D}_{\mathrm{x}}\left(\mathrm{E}^{\prime}\right) \mathrm{D}_{\mathrm{y}}\left(\mathrm{E}-\mathrm{E}^{\prime}\right) \tag{6.2.18}
\end{equation*}
$$

6.3. Minimum resistance of a wire

Now that we have discussed the concept of subbands, we are ready to answer a very interesting fundamental question. Consider a wire with a cross-section $L_{y} L_{z}$ with a voltage V applied across it.

Fig.6.3.1. A wire with a crosssection $L_{y} L_{z}$ with a voltage V applied across large contacts.

What is the conductance of this wire if the contacts were perfect, and we reduce its length to very small dimensions? Based on Ohm's law, we might be tempted to say that the conductance will increase indefinitely as the length of the wire is reduced, since the resistance (inverse of conductance) is proportional to the length. However, as I pointed out in the introductory chapter (Section 1.3) the maximum conductance, $\mathrm{G}=\mathrm{I} / \mathrm{V}$ for a one-level conductor is a fundamental constant given by

$$
\begin{equation*}
\mathrm{G}_{0} \equiv \mathrm{q}^{2} / \mathrm{h}=38.7 \mu \mathrm{~S}=(25.8 \mathrm{~K} \Omega)^{-1} \tag{6.3.1}
\end{equation*}
$$

We are now ready to generalize this concept to a wire with a finite cross-section, It has been established experimentally that once the length of a wire has been reduced sufficiently that an electron can cross the wire without an appreciable chance of scattering (ballistic transport) the conductance will approach a constant value given by (assuming "perfect" contacts)

$$
\begin{equation*}
\mathrm{G}=[\mathrm{M}(\mathrm{E})]_{\mathrm{E}=\mathrm{E}_{\mathrm{f}}} \mathrm{G}_{0} \tag{6.3.2}
\end{equation*}
$$

where $\mathrm{M}(\mathrm{E})$ is the number of "modes" or subbands at an energy E . The actual number of modes $\mathrm{M}(\mathrm{E})$ at a given energy depends on the details of the wire, but the maximum
conductance per mode is G_{0} independent of these details. This can be shown as follows.

Maximum current in a single-moded wire: Consider a mode or subband v with a dispersion relation $\mathrm{E}_{v}\left(\mathrm{k}_{\mathrm{x}}\right)$. The current carried by the states having a positive group velocity can be written as

$$
I=\frac{-q}{L} \sum_{v_{x}\left(k_{x}\right)>0} v_{x}\left(k_{x}\right)
$$

We have seen earlier that for free electrons with $\mathrm{E}=\hbar^{2} \mathrm{k}^{2} / 2 \mathrm{~m}$, the velocity is given by $\hbar \mathrm{k} / \mathrm{m}$, which is equal to the momentum $\hbar \mathrm{k}$ divided by the mass, m . But what is the appropriate velocity for electrons in a periodic solid having some dispersion relation $\mathrm{E}_{\mathrm{V}}(\overrightarrow{\mathrm{k}})$? The answer requires careful discussion which we will postpone for the moment (se Section 6.4) and simply state that the correct velocity is the group velocity generally defined as the gradient of the dispersion relation

$$
\hbar \overrightarrow{\mathrm{v}}(\overrightarrow{\mathrm{k}})=\vec{\nabla}_{\mathrm{k}} \mathrm{E}_{\mathrm{v}}(\overrightarrow{\mathrm{k}})
$$

so that in our one-dimensional example we can write $\mathrm{v}_{\mathrm{x}}\left(\mathrm{k}_{\mathrm{x}}\right)=\partial \mathrm{E}_{\mathrm{V}}\left(\mathrm{k}_{\mathrm{x}}\right) / \partial \mathrm{k}_{\mathrm{x}}$ and the current given by

$$
\begin{align*}
\mathrm{I}=\frac{-\mathrm{q}}{\mathrm{~L}} & \sum_{\mathrm{v}\left(\mathrm{k}_{\mathrm{x}}\right)>0} \frac{1}{\hbar} \frac{\partial \mathrm{E}_{\mathrm{v}}\left(\mathrm{k}_{\mathrm{x}}\right)}{\partial \mathrm{k}_{\mathrm{x}}} \\
& =-\mathrm{q} \int \frac{\mathrm{dk}_{\mathrm{x}}}{2 \pi} \frac{1}{\hbar} \frac{\partial \mathrm{E}_{\mathrm{v}}\left(\mathrm{k}_{\mathrm{x}}\right)}{\partial \mathrm{k}_{\mathrm{x}}}=\frac{-\mathrm{q}}{\mathrm{~h}} \int \mathrm{dE} \mathrm{E}_{\mathrm{v}} \tag{6.3.3}
\end{align*}
$$

showing that each mode of a wire carries a current of (q / h) per unit energy. At equilibrium there is no net current because states with positive and negative velocities are all equally occupied. An applied voltage V changes the occupation of the levels over an energy range $\mathrm{E}_{\mathrm{f}} \pm(\mathrm{qV} / 2)$ creating a non-equilibrium situation whose details depend on the nature of the coupling to the contacts. But regardless of all these details, it is apparent that the maximum net current will be established if the positive velocity states
are occupied upto $\mu_{1}=\mathrm{E}_{\mathrm{f}}+(\mathrm{qV} / 2)$ while the negative velocity states are occupied upto $\mu_{2}=\mathrm{E}_{\mathrm{f}}-(\mathrm{qV} / 2)$, so that in the energy range

$$
\mathrm{E}_{\mathrm{f}}-(\mathrm{qV} / 2)<\mathrm{E}<\mathrm{E}_{\mathrm{f}}+(\mathrm{qV} / 2)
$$

only the positive velocity states are occupied. From Eq.(6.3.3) we can write the current carried by these states belonging to mode v as

$$
\mathrm{I}=\frac{-\mathrm{q}}{\mathrm{~h}}\left(\mu_{1}-\mu_{2}\right) \rightarrow \frac{\mathrm{q}^{2}}{\mathrm{~h}} \mathrm{~V}
$$

so that the maximum conductance of mode v is equal to q^{2} / h as stated earlier (see Eq.(6.3.2)). Note that this result is independent of the dispersion relation $E_{v}\left(k_{x}\right)$ for the mode v.

Number of modes: How many modes $\mathrm{M}(\mathrm{E})$ we actually have at a given energy, however, is very dependent on the details of the problem at hand. For example, if the relevant energy range involves the bottom of the conduction band then we may be able to approximate the band diagram with a parabolic relation (see Fig.6.1.2, Eq.(6.1.1)). The subands can then be catalogued with two indices (n, p) as shown in Fig.6.3.3

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}, \mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}\right) \approx \mathrm{E}_{\mathrm{c}}+\mathrm{n}^{2} \varepsilon_{\mathrm{y}}+\mathrm{p}^{2} \varepsilon_{\mathrm{z}}+\frac{\hbar^{2} \mathrm{k}_{\mathrm{x}}^{2}}{2 \mathrm{~m}_{\mathrm{c}}} \tag{6.3.4}
\end{equation*}
$$

where

$$
\varepsilon_{\mathrm{y}}=\pi^{2} \hbar^{2} / 2 \mathrm{~m}_{\mathrm{c}} \mathrm{~L}_{\mathrm{y}}^{2} \quad \text { and } \quad \varepsilon_{\mathrm{z}}=\pi^{2} \hbar^{2} / 2 \mathrm{~m}_{\mathrm{c}} \mathrm{~L}_{\mathrm{z}}^{2}
$$

assuming that the electrons are confined in the wire by infinite potential wells of width L_{y} and L_{z} in the y - and z-directions respectively. The mode density $M(E)$ then looks as shown increasing with energy in increments of one everytime a new subband becomes available.

Fig.6.3.2. Energy dispersion relation showing the four lowest conduction band subbands (see Eq.(6.3.4)) in a rectangular wire with $L_{y}=L_{z}=10 \mathrm{~nm}, \mathrm{~m}_{\mathrm{c}}=0.25 \mathrm{~m}$.

The details of the subands in the valence band are much more complicated, because of the multiple bands that are coupled together giving rise to complicated dispersion relations. For simple back-of-the-envelope estimates we could approximate it with a simple inverted parabola

$$
\begin{equation*}
\mathrm{h}(\overrightarrow{\mathrm{k}})=\mathrm{E}_{\mathrm{v}}-\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}_{\mathrm{v}}} \tag{6.3.5}
\end{equation*}
$$

Fig.6.3.3. Energy dispersion relation showing the four lowest valence band subbands (see Eqs.(6.3.5) and (6.3.6)) in a rectangular wire with $\mathrm{L}_{\mathrm{y}}=\mathrm{L}_{\mathrm{z}}=\mathbf{1 0} \mathrm{nm}, \mathrm{m}_{\mathrm{v}}=0.25 \mathrm{~m}$.

We then get inverted dispersion relations for the different subbands

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}, \mathrm{p}}\left(\mathrm{k}_{\mathrm{x}}\right) \approx \mathrm{E}_{\mathrm{v}}-\mathrm{n}^{2} \varepsilon_{\mathrm{y}}-\mathrm{p}^{2} \varepsilon_{\mathrm{z}}-\frac{\hbar^{2} \mathrm{k}_{\mathrm{x}}^{2}}{2 \mathrm{~m}_{\mathrm{v}}} \tag{6.3.6}
\end{equation*}
$$

with a mode density, $\mathrm{M}(\mathrm{E})$ that increases with decreasing energy as shown in Fig.6.3.3.

Minimum resistance of a wide conductor:

We have see that there is a minimum resistance $\left(\mathrm{h} / \mathrm{q}^{2}\right)$ that a wire can have per mode. An interesting consequence of this is that there is a minimum resistance that a given conductor could have. For example, we could model a Field Effect Transistor (FET) as a two-dimensional conductor with a width W and a length L . As the length L is made shorter, it would approach a ballistic conductor whose resistance is dominated by the contact resistance. This is a well-known fact and device engineers work very hard to come up with contacting procedures that minimize the contact resistance. What is not as well-recognized is that there is a fundamental limit to how small the contact resistance can possibly be even with the best conceivable contacts.

To estimate this minimum contact resistance, let us assume a n-type semiconductor where conduction takes place through the conduction band states described by a parabolic dispersion relation of the form given in Eq.(6.3.4). Assuming that it has only one subband along the z-direction we can write the electron density per unit area at $\mathrm{T}=0 \mathrm{~K}$ as (see Table 6.2.1)

$$
\begin{equation*}
\mathrm{n}_{\mathrm{s}}=\frac{\mathrm{m}_{\mathrm{c}}}{\pi \hbar^{2}}\left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{c}}\right) \tag{6.3.7}
\end{equation*}
$$

The maximum conductance is given by

$$
G_{\max }=\frac{2 q^{2}}{h} \text { Int } \sqrt{\frac{E_{f}-E_{c}}{\hbar^{2} \pi^{2} / 2 m_{c} W^{2}}} \approx W \frac{2 q^{2}}{h} \sqrt{\frac{2 n_{s}}{\pi}}
$$

where we have made use of Eq.(6.3.7) and used the symbol $\operatorname{Int}(x)$ to denote the largest integer smaller than ' x '. The minimum resistance is given by the inverse of $G_{\max }$:

$$
\begin{equation*}
\mathrm{R}_{\min } \mathrm{W}=\frac{\mathrm{h}}{2 \mathrm{q}^{2}} \sqrt{\frac{\pi}{2 \mathrm{n}_{\mathrm{s}}}}=\frac{16.28 \mathrm{~K} \Omega}{\sqrt{\mathrm{n}_{\mathrm{s}}}} \tag{6.3.8}
\end{equation*}
$$

With a carrier density of $n_{s}=1 \mathrm{e} 12 / \mathrm{cm}^{2}$, this predicts $R_{\text {min }} \mathrm{W} \approx 160 \Omega-\mu \mathrm{m}$. Note that we have assumed only one subband arising from the z-confinement. For silicon, the six conduction valleys give rise to six sets of subbands, of which the two lowest are degenerate. This means that if the L_{z} dimension is small enough, there will be two degenerate subbands arising from the z-confinement and the corresponding minimum contact resistance will be half our estimate which was based on one z-subband: $\mathrm{R}_{\text {min }} \mathrm{W} \approx 80 \Omega-\mu \mathrm{m}$.

6.4. Velocity of a (sub)band electron

Electrons in periodic structures have energy levels that form (sub)bands and the corresponding wavefunctions have the form

$$
\begin{equation*}
\{\psi\}_{\mathrm{n}}=\{\psi\}_{0} \exp \left[\pm \mathrm{ikx} x_{\mathrm{n}}\right] \tag{6.4.1}
\end{equation*}
$$

where $\mathrm{x}_{\mathrm{n}}=\mathrm{n}$ a denotes points on a discrete lattice and $\{\psi\}_{\mathrm{n}}$ is a column vector of size (Bx1), 'B' being the number of basis functions describing the unit cell.

These wavefunctions thus have a unit cell component that is atomic-like in character in addition to a free electron or plane wave-like $\sim \exp$ [$\pm \mathrm{ikx}$] character. They are often referred to as Bloch waves. When we we first discussed the Schrodinger equation, I mentioned that an electron in a plane wave state $\exp [\pm \mathrm{ikx}]$ could be associated with a velocity of $\hbar \mathrm{k} / \mathrm{m}$, since the probability current was equal to this quantity times the probability density (see Eq.(2.1.20)). What is the velocity of an electron in a Bloch wave state?

A plausible conjecture is that the velocity must be $\hbar \mathrm{k} / \mathrm{m}^{*}, \mathrm{~m}^{*}$ being the effective mass. This is indeed true under certain conditions, but a more general discussion is called for, since not all bands / subbands can be described in terms of an effective mass especially in low dimensional structures like quantum wires. Besides, it is not clear that we should be looking for a single number. In general we could have a velocity matrix of size ($\mathrm{B} \times \mathrm{B}$).

Velocity matrix: To identify this velocity matrix, we start by noting that the Hamiltonian for a quantum wire can be written in a block tridiagonal form

$$
\mathrm{H}_{\substack{\text { quantum } \tag{6.4.2}\\
\text { wire }}}=\left[\begin{array}{llllll}
\alpha & \beta & 0 & 0 & 0 & \cdots \\
\beta^{+} & \alpha & \beta & 0 & 0 & \cdots \\
0 & \beta^{+} & \alpha & \beta & 0 & \cdots \\
\cdots & \cdots & \cdots &
\end{array}\right]
$$

which can be visualized as a 1-D array of unit cells each of which has a very large number of basis functions, B equal to the number of atoms in a cross-section times the number of basis functions per atom. The time-dependent Schrodinger equation for the quantum wire can be written in the form

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\mathrm{~d} \psi_{\mathrm{n}}}{\mathrm{dt}}=\alpha \psi_{\mathrm{n}}+\beta \psi_{\mathrm{n}+1}+\beta^{+} \psi_{\mathrm{n}-1} \tag{6.4.3}
\end{equation*}
$$

where the ψ 's are ($\mathrm{B} \times 1$) column vectors, while α, β are ($\mathrm{B} \times \mathrm{B}$) matrices.
To discover the appropriate expression for the current, we need to look at the time rate of change in the total probability density in a particular unit cell, say the nth one. This can be written as $\left(\psi_{n}^{+} \psi_{n}\right)$ which is a (1 x 1) matrix or a scalar number equal to the sum of the squared magnitudes of all B components of ψ (note that $\psi_{n} \psi_{n}^{+}$is not suitable for this purpose since it is (BxB) matrix). From Eq.(6.4.3), we can write the time derivative of $\left(\psi_{n}^{+} \psi_{n}\right)$ as

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{dt}} \psi_{\mathrm{n}}^{+} \psi_{\mathrm{n}}=\psi_{\mathrm{n}}^{+} \beta \psi_{\mathrm{n}+1}+\psi_{\mathrm{n}}^{+} \beta^{+} \psi_{\mathrm{n}-1}-\psi_{\mathrm{n}-1}^{+} \beta \psi_{\mathrm{n}}-\psi_{\mathrm{n}+1}^{+} \beta^{+} \psi_{\mathrm{n}} \tag{6.4.4}
\end{equation*}
$$

Let us see if we can write the right hand side as the difference in the current to the left of the unit and the current to the right of the unit

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \psi_{\mathrm{n}}^{+} \psi_{\mathrm{n}}=\frac{\mathrm{J}_{\mathrm{n}-(1 / 2)}-\mathrm{J}_{\mathrm{n}+(1 / 2)}}{\mathrm{a}} \tag{6.4.5}
\end{equation*}
$$

motivated by the fact that in a continuum representation, the continuity equation requires that $\mathrm{dn} / \mathrm{dt}=-\mathrm{dJ} / \mathrm{dx}$. It is straightforward to check that if we define the currents as

$$
\begin{equation*}
\mathrm{J}_{\mathrm{n}+(1 / 2)} \equiv \frac{\psi_{\mathrm{n}+1}^{+} \beta^{+} \psi_{\mathrm{n}}-\psi_{\mathrm{n}}^{+} \beta \psi_{\mathrm{n}+1}}{\mathrm{i} \hbar} \mathrm{a} \tag{6.4.6}
\end{equation*}
$$

then Eq.(6.4.5) is equivalent to (6.4.4). We can make use of Eq.(6.4.1) for a (sub)band electron to express $\psi_{\mathrm{n}+1}$ in Eq.(6.4.4) in terms of ψ_{n} to obtain

$$
\begin{equation*}
\mathrm{J}_{\mathrm{n}+(1 / 2)} \equiv \psi_{\mathrm{n}}^{+} \frac{\mathrm{a}}{\mathrm{i} \hbar}\left[\beta^{+} \exp (-\mathrm{ika})-\beta \exp (+\mathrm{ika})\right] \psi_{\mathrm{n}} \tag{6.4.7}
\end{equation*}
$$

suggesting that we define

$$
\begin{equation*}
[\mathrm{v}(\mathrm{k})] \equiv \frac{\mathrm{a}}{\mathrm{i} \hbar}\left[\beta^{+} \exp (-\mathrm{ika})-\beta \exp (+\mathrm{ika})\right] \tag{6.4.8}
\end{equation*}
$$

as the velocity matrix for an electron a (sub)band state with a given ' k '. Now that we are finished with the mathematical argument, let us see if it makes physical sense.

Firstly we note that the energy eigenvalues are obtained by diagonalizing the matrix (this follows from the basic result, Eq.(5.2.4), underlying the calculation of bandstructure)

$$
\begin{equation*}
[h(k)]=\alpha+\beta \exp (+i k a)+\beta^{+} \exp (-i k a) \tag{6.4.9}
\end{equation*}
$$

It is straightforward to check that this Hamiltonian matrix is related to the velocity matrix we just obtained (Eq.(6.4.8)) by the relation

$$
\begin{equation*}
[\mathrm{v}(\mathrm{k})]=\frac{1}{\hbar} \frac{\mathrm{~d}}{\mathrm{dk}}[\mathrm{~h}(\mathrm{k})] \tag{6.4.10}
\end{equation*}
$$

This means that if the two matrices ([h] and [v]) were simultaneously diagonalized, then the eigenvalues would indeed obey the relation

$$
\hbar \overrightarrow{\mathrm{v}}(\overrightarrow{\mathrm{k}})=\vec{\nabla}_{\mathrm{k}} \mathrm{E}_{\mathrm{V}}(\overrightarrow{\mathrm{k}})
$$

that we used to derive the maximum current carried by a subband (see Eq.(6.3.3)).
Can we diagonalize $[\mathrm{h}]$ and $[\mathrm{v}]$ simultaneously? It is easy to see from the definitions of these matrices (Eqs.(6.4.8) and (6.4.9)) that the answer is yes if the matrices $[\alpha]$ and $[\beta]$ can be simultaneously diagonalized. We can visualize the tridiagonal Hamiltonian matrix in Eq.(6.4.2) as a 1D array where the matrices $[\alpha]$ and $[\beta]$ are each of size $(B \times B), B$ being the number of basis functions needed to represent the cross-section of the wire.

Now if we can diagonalize both $[\alpha]$ and $[\beta]$ then in this representation, we can visualize the quantum wire in terms of independent modes or subbands that conduct in parallel:

The same representation will also diagonalize the velocity matrix and its diagonal elements will give us the velocity for each mode. One good example of a structure where this is possible is a simple square lattice:

which we represent as a 1-D array of the form

The matrix $[\beta],\left[\beta^{+}\right]$represent the coupling between one column of atoms with the corresponding ones on the next column and can be written as an identity matrix [I]. This means that once we find a suitable representation to diagonalize $[\alpha]$, the matrix [β] wil also be diagonal, since the identity matrix is unchanged by a basis transformation. Hence, we can always diagonalize $[\alpha],[\beta],[\mathrm{h}],[\mathrm{v}]$ simultaneously and use this representation to visualize the quantum wire as collection of independent single-moded wires in parallel.

Mode density: We have seen in the last Section that the mode density $\mathrm{M}(\mathrm{E})$ plays an important role in the physics of quantum wires, comparable to the role played by the density of states $\mathrm{D}(\mathrm{E})$ for bulk semiconductors. If a wire of length L has eigenstates catalogued by two indices (α, k) then we could define the mode density $\mathrm{M}(\mathrm{E})$ formally as

$$
\begin{equation*}
\mathrm{M}(\mathrm{E})=\sum_{\alpha} \sum_{\mathrm{k}} \delta\left(\mathrm{E}-\varepsilon_{\alpha, \mathrm{k}}\right) \frac{1}{\mathrm{~L}} \frac{\partial \varepsilon_{\alpha, \mathrm{k}}}{\partial \mathrm{k}} \tag{6.4.11}
\end{equation*}
$$

This expression can be evaluated simply if the eigenvalues are separable in the two indices: $\varepsilon_{\alpha, \mathrm{k}}=\varepsilon_{\alpha, 0}+\underline{\varepsilon}(\mathrm{k})$. But this is possible only if the subbands can be decoupled as discussed above.

Exercises

E.6.1. Plot a parabolic $E(k)$ relation with an effective mass of 0.12 m and compare with the $\mathrm{sp}^{3}{ }^{3} *$ bandstructure from Chapter 4 as shown in Fig.6.1.2.
E.6.2. Plot the dispersion relation for the two lowest subbands of a zigzag nanotube with m=66 and m=65 and compare with Fig.6.1.7.
E.6.3. Compare the dispersion relations for a 2D graphite sheet from Eqs.(6.1.4) and (6.1.11) as shown in Fig.6.1.8.
E.6.4. Compare the 3D density of states with the density of states for a 2D box (a) with thickness 5 nm and (b) with thickness 20 nm as shown in Fig.6.2.1.
E.6.5. Compare the density of states of graphite with the density of states for a zigzag nanotube with (a) diameter 15.4 nm and (b) with diameter 61.7 nm as shown in Fig.6.2.2.
E.6.6. Plot the energy dispersion relation for the four lowest conduction band subbands (see Eq.(6.3.4)) in a rectangular wire with $\mathrm{L}_{\mathrm{y}}=\mathrm{L}_{\mathrm{z}}=10 \mathrm{~nm}, \mathrm{~m}_{\mathrm{c}}=0.25 \mathrm{~m}$ and compare with Fig.6.3.2.
E.6.7. Plot the energy dispersion relation showing the four lowest valence band subbands (see Eqs.(6.3.5) and (6.3.6)) in a rectangular wire with $\mathrm{L}_{\mathrm{y}}=\mathrm{L}_{\mathrm{z}}=10 \mathrm{~nm}$, $\mathrm{m}_{\mathrm{v}}=0.25 \mathrm{~m}$. and compare with Fig.6.3.3.

