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5/ Bandstructure

5.1. Toy examples

5.2. General result

5.3. Common semiconductors

5.4. Effect of spin-orbit coupling

5.5. Supplementary notes: Dirac equation

In the last chapter we have seen how the atomic orbitals can be used as a basis to write
down a matrix representation for the Hamiltonian operator, which can then be
diagonalized to find the energy eigenvaues. In this chapter we will show how this
approach can be used to caculate the energy elgenvaues for an infinite periodic solid.
Wewill first use a few 'toy' examples to show that the bandstructure can be calculated
by solving amatrix elgenvalue equation of the form

E(po) = [h(K)](90)

where [h(K)]= Z[Hnm]em'(am_an)

The matrix [h(k)] is (bxb) in size, 'b' being the number of basis orbitals per unit cell.
The summation over 'm’ runs over all neighboring unit cells (including itself) with which
cell 'n" hasany overlap (that is, for which Hhm is non-zero). The sum can be evauated
choosing any unit cell 'n" and the result will be the same because of the periodicity of the
lattice. The bandstructure can be plotted out by finding the eigenvalues of the (bxb)
matrix [h(k)] for each value of k and it will have 'b' branches, one for each eigenvalue.
Thisisthe central result which we will first motivate using toy examples (Section 5.1),
then formulate generally for periodic solids (Section 5.2), and then use to discuss the
bandstructure of 3-D semiconductors (Section 5.3). We end in Section 5.4 with a
discussion of spin-orbit coupling and its effect on the energy levels in semiconductors.
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142 Quantum Transport: Atom to Transistor

5.1. Toy examples
Let us start with a toy one-dimensional solid composed of 'N' atoms (see
Fig.5.1.1).

Fig.5.1.1. A
one-dimensional solid o0 m L
Pap [N

If we use one orbital per atom we can write down a (NxN) Hamiltonian matrix using
one orbital per atom:

H= 1) 12) IN-1) IN)
1) Eo Ess 0 Ess
[2) Es Eoq 0 0
. (511)
IN-1) 0 0 Eq Eq
Ny Eg 0 Eq Eo

We have used what is cdled the periodic boundary condition (PBC), namely, that the
Nth atom wraps around and overlaps the 1st atom like a ring. This leads to non-zero
valuesfor the matrix elements Hq \y and Hy 1 which would normally be zero if the solid
were abruptly truncated. The PBC is usually not redigtic, but if we are discussing the
bulk properties of alarge solid then the precise boundary condition at the surface does
not matter and we are free to use whatever boundary conditions makes the mathematics
the smplest, which happensto be the PBC.

So what are the eigenvalues of the matrix [H] given in Eq.(5.1.1) ? This is
essentialy the same matrix that we discussed in Chapter 1 in connection with the finite
difference method. If we find the eigenvalues numericaly we will find that they can dl
be written in the form (o: integer)

Eq = Eg + 2EgCcOs (k@) wWhere kya= a2n/N (5.1.2
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Thevaluesof k,arunfrom- = to + n and are spaced by 2=/N as shown in Fig.5.1.2.
If N is large the eigenvalues are closely spaced (as on the left); if N is small the
eigenvalues are further apart (as on theright).

Why isit that we can write down the eigenvalues of this matrix so smply ? The
reason is that because of its periodic nature, the matrix equation E (y) = [H] (v)

consists of aset of N equations which are al identica in form and can al be written as
(n=12,...N)

Evn = Eovwn + EsWna + EsVna (5.1.3)
This set of equations can be solved analytically by the ansatz:
yn = yoe ™ (5.14)

Substituting Eq.(5.1.4) into (5.1.3) and canceling the common factor exp[ikna] we
obtain

ika ika

Evo = Epwo + Exse ™y + Exse ™y

that is, E = EQ + 2Ess cos (ka)

This shows us that a solution of the form shown in Eq.(5.1.4) will satisfy our set of
equations for any vaue of ‘k’. But what restricts the number of eigenvaues to afinite
number (asit must be for afinite-sized matrix)?

Thisisaresult of two factors. Firstly, periodic boundary conditions require the
wavefunction to be periodic with a period of ‘Na and it is this finite lattice size that
restricts the alowed values of ‘k’ to the discrete set k,a = a2rn/N (see Eq.(5.1.2)).

Secondly, values of ‘ka differing by 2t do not represent distinct states on a discrete
lattice. The wavefunctions
exp(ikyXx) and  exp(i[ky +(2n/a)]X)

represent the same state because at any lattice point x, = na,

exp (i kg X,) = exp (i [ko, + (2n/3)] Xp)
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Fig.5.1.2. The solid lines in both (a) and (b) are plots of E vs. ka/n from
Eq.(5.1.2) with Eg =0, Egg = - 1. The x's denote the eigenvalues of the

matrix in Eqg.(3.2.1) with (a) N=100 and with (b) N=20.
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Fig.5.1.3. Same as Fig.5.1.2b with Eg = 0 and (a) Esg = -1
and with (b) Egg = +1.
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They are NOT equa between two lattice points and thus represent distinct statesin a
continuous lattice. But once we adopt a discrete lattice, values of k,, differing by 2n/a
represent identical states and only the vaues of k,a within a range of 27 yield
independent solutions. In principle, any range of size 2% is acceptable, but it is
common to restrict the values of k, a to the range (sometimes called the first Brillouin
zone)

—-n<ka<+m for periodic boundary conditions (5.1.5)

It isinteresting to note that the finite range of the lattice (“Na’) leads to a discreteness
(inunits of “ 2n/Na”) in the alowed values of ‘k’ while the discreteness of the lattice
(*a’) leads to afinite range of alowed 'k’ (*2r/a”). The number of alowed vaues
of 'k’

(2r/a)/(2n/Na) =N

is exactly the same as the number of pointsin the real space lattice. This ensures that the
number of eigenvalues (which isequal to the number of alowed ‘k’ vaues) is equa to
the size of the matrix [H] (determined by the number of lattice points).

When do bands run downwards in k ? In Fig.5.1.1 we have assumed Egss to be

negative which is what we would find if we used say EQ.(4.1.11c) to evaduate it (note
that the potentials U or UR are negative) and the atomic orbitalswere's orbitals. But if
the atomic orbitals are 'px’ orbitals as shown in Fig.5.1.3b then the sign of the overlap
integral (Ess) would be negative and the plot of E(k) would run downwards in 'k’ as
shown. Roughly speaking this is what happens in the vaence band of common
semiconductors which are formed primarily out of atomic 'p' orbitals.
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Latticewith a basis - the Peierls distortion:

(a)
«—2 »
(b)

Fig.5.1.4. (a) A one-dimensional solid whose unit cell consists of two atoms

(b) Basic lattice defining the periodicity of the solid.

Consider next aone-dimensiona solid whose unit cdl consists of two atoms as
shownin Fig.5.1.4. Actually one-dimensional structures like the one shown in Fig.5.1.1
tend to distort spontaneoudly into the structure shown in Fig.5.1.4 - a phenomenon that
is generaly referred to as the Peierls distortion. We will not go into the energetic
considerations that cause this to happen. Our purpose isssimply to illustrate how we can
find the bandstructure for a solid whose unit cell contains more than one basis orbital.
Using one orbital per atom we can write the matrix representation of [H] as

[H] = 1) 8) [2a) [26) ) %)
) Ep Es O O 0 0
|lB> Ess Eo Ess 0 0 0
> 0 Ess Eo Ess 0 0 (5.1.6)
|ZB> 0 0 Ess Eo Ess 0
) 0 0 0 Es E) Ess
) 0 0 0 0 Es Eo

Unlike the matrix in Eq.(5.1.1) there are two different overlap integrals Ess and Ess

appearing alternately. As such the ansatz in Eq.(5.1.4) cannot be used directly. But we
could combine the elements of the matrix into (2x2) blocks and rewriteit in the form
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H = 1D 12) 13)
11 Hi1 H12 0
|2) H21 H22 H23 ... (5.12.7)
3 0 H32 H33
where

Eo Ess 0o 0 0 Eg
Hpon = H = : Hnno1= S
nn |:E$ EO:| n,n+1 |:Ess 0 n,n-1 0 0

The matrix in Eq.(5.1.7) is now periodic and we can write the matrix equation E (y) =
[H] (v) intheform

Eon = Hmmon + HpnaOna + Huna Onn (5.1.8)

where ¢, represents a (2x1) column vector and the element Hhm is a (2x2) matrix. We
can solve this set of equations using the ansatz : on = ¢pe'km (5.1.9)

Fig.5.1.5. Bandstructure 2

for the "dimerized" one-

[y

dimensional solid shown in

o

Fig.5.1.4 plotted from Eq.
(5.1.10) using Eg =0,
ESS =2, ESS' =1.

Energy (eV) --->
AN

'
N

R (in units 0f pi/a)---g'5 !

'
(o8]

Substituting Eq.(5.1.9) into (5.1.8) and canceling the common factor exp[iknal we

obtain
_ —ika ika
Eoo = Hmoo + Hppae 0o + Hpnie “0g

C, Eg+Eg €K@
that is, E{oo} = - ia s 190}
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148 Quantum Transport: Atom to Transistor

We can now find the eigenvalues by setting the determinant to zero:

Eo-E Ee+Eg €K@
det 0 o SS SS -0
Eg+Eg €°? Eo-E
_ 2 , 1/2
that is, E = E; * (E552+ESS +2ESSESScoska) (5.1.10)

Eq.(5.1.10) gives us a E(k) diagram with two branches as shown in Fig.5.1.5.

5.2. General result

It is draightforward to generalize this procedure for cdculating the
bandstructure of any periodic solid with arbitrary number of basis functions per unit
cel. Consider any particular unit cel ‘n’ (Fig.5.2.2) connected to its neighboring unit
cells‘'m’ by amatrix [Hpny,] of size (bxb), ‘b’ being the number of basis functions per

unit cell. We can write the overall matrix equation in the form

Z[Hnm]{q’m} = E{on} (5.2.1)

m

where {@,} isa(bx1) column vector denoting the wavefunction in unit cell ‘m’.

Fig.5.2.1. Schematic picture
showing a unit cell ‘n’ connected @
to its neighboring unit cells ‘m’ by [Hnm]

a matrix [Hpm] of size (bxb), ‘b’ @

being the  number of  basis

e - ® \Unp &"
unctions per unit cell. The

configuration of neighbors  will w
differ from one solid to another,

but in a periodic solid the @

configuration is identical

regardless of which ‘n’ we choose.
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Theimportant insight is the observation that this set of equations can be solved by the
ansatz

lom} = {90} exp'k: (52.2)

provided Eq.(5.2.1) looks the same in every unit cell ‘n’. This is a consequence of the
periodicity of the lattice and it ensures that when we substitute our ansatz Eq.(5.2.2) into
Eqg.(5.2.1) we obtain

E{oo} = [h()]{oo} (5.2.3)

with [h(®)]= Y, [Hon] e (Em=dn) (5.2.4)
m

independent of which unit cell ‘n’” we use to evauate the sum in Eq.(5.2.4). Thisis the
central result underlying the bandstructure of periodic solids. The summation over 'm’
in Eq,.(5.2.4) runs over al neighboring unit cells (including itself) with which cell 'n' has
any overlap (that is, for which Hhm is non-zero). The size of the matrix [h(k)] is (bxb),
'b" being the number of basis orbitals per unit cell. The bandstructure can be plotted out
by finding the eigenvalues of the (bxb) matrix [h(k)] for each vaue of k and it will
have 'b' branches one for each eilgenvalue.

Allowed values of k: In connection with the 1-D example, we explained how ‘k’ has
only afinite number of allowed values equa to the number of unit cells in the solid. To
reiterate the basic result, the finite range of the lattice (“Na”’) leads to a discreteness (in
units of “ 2x/Na”) in the alowed values of ‘k’ while the discreteness of the lattice
(*a’) leads to a finite range of dlowed ‘k’ (“2r/a’). How do we generdize this
result beyond one dimension?

Thisisfairly straightforward if the solid forms a rectangular (or a cubic) lattice
asshown in Fig.5.2.2a. In 2-D the allowed va ues of k can bewritten as

K] = %(m2n/Ma)+§ (n2n/Nb) (5.2.5)

where (m,n) are apair of integers while M, N represent the number of unit cells stacked
along the x- and y-direction respectively. This seems like a reasonable extension of the
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150 Quantum Transport: Atom to Transistor

1-D result (cf. Eq.(5.1.2): ky =0.(2n/a). Formally we could derive Eq.(5.2.5) by
writing(Ly= XMa ,Lo= §Nb)

kLy= m2t — ky,= m2n/Ma
REZ: n2nr — ky= n2n/Nb

Fig.5.2.2. A finite 2-D
rectangular lattice with M
unit cells stacked along l—_’

2

the x-direction and N unit

cells stacked along the y-

direction:

(E1= f(Ma,EZZ be)

Brillouin zone: Formdly, the general procedure for constructing the Brillouin zone
starts by constructing the reciprocal lattice (Fig.5.2.2b) in k-space, which can be viewed
as the Fourier transform of the direct lattice. In 1-D we know that a set of impulses
separated by ‘&

Direct lattice

& x
has a Fourier transform consisting of a set of impulses separated by 2r/a
Reciprocal lattice
6 0 O 6 6 O » Kk

2n/a
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We could then construct the first Brillouin zone centered around k = 0 by connecting it
to the neighboring points on the reciprocal lattice and drawing their bisectors:

—nt/a +m/a

)
()
()

P
P
A\
=~

Fal
\YJ

Brillouin zone

Similarly for atwo dimensional rectangular lattice we can construct a reciprocal lattice

and then obtain the first Brillouin zone by drawing perpendicular bisectors of the lines
joining k = (0,0) to the neighboring points on the reciprocal lattice:

N 1
Reciprocal

lattice N Y
Brillouin
Direct lattice 411 “Zone
s 0 9 ?
2rn/b
<>
2rn/a

Fig.5.2.3. (a) Rectangular lattice in real space.

(b) Corresponding reciprocal lattice.

The Brillouin zone obtained from this procedure defines the alowed range of vaues of

k

—n<Kkya<+m and -m<kyb<+m (5.2.6)

which agrees with what one might write down from a heuristic extension of Eq.(5.1.5).
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152 Quantum Transport: Atom to Transistor

Reciprocal lattice: In generd, if the direct lattice is not rectangular or cubic, it is not
possible to construct the reciproca lattice quite so simply by inspection. We then need
to adopt a more formal procedure as follows. We first note that any point on a direct
lattice in 3-D can be described by a set of three integers (m,n,p) such that

R= ma +na,+pag (5.2.7)

where & , @, , ag are caled the basis vectors of the lattice. The points on the reciprocal
|attice can be written as

K= MA;+NA,+PAg (5.2.7)

where (M,N,P) areintegersand A; , A, , A3 are determined such that

Aj &= 21y

i (5.2.8)

djj being the Kronecker delta (equal to oneif i = j, and equal to zero if i # j). Eq.(5.2.8)
can be satisfied by writing

Ap= Z@Xd) g, 2m(Exd) g 2@XB) g,

& - (8 x ag) a - (83 x &) a3 (& xa

It iseasy to see that this formal procedure for constructing the reciprocal lattice
leadsto the lattice shown in Fig.5.2.3b if we assume the real space basis vectors to be
&= Xa,a= yb,3a= 2zc.Eq,(5.29) thenyidds

Ai= X(2rn/a),Ay,= Y (2n/b), Az= 2(2n/c).

Using Eq.(5.2.7) we can now set up the reciprocal lattice shown in Fig.5.2.3b. Of
course, in this case we do not really need the forma procedure. The rea vaue of the
formal approach liesin handling non-rectangular lattices, aswe will now illustrate with a
2-D example.

A 2-D example: The carbon atoms on the surface of a sheet of graphite are arranged in

the hexagonal pattern shown in Fig.5.2.4a. It can be seen that the structure is not redly
periodic. Adjacent carbon atoms do not have identical environments. But if we lump two
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atoms together into a unit cdl then the lattice of unit cells is periodic: every site has an
identical environment (Fig.5.2.4b).

(a) Atomic arrangement on surface of graphite

ans
T/@_\% /% it G

(b) Lattice showing (c) Reciprocal lattice
arrangement of unit cells

(0,2r/3b)

(a,b)
@ &

& 2
®

(a,-b)

Fig.5.2.4. (a) Arrangement of carbon atoms on the surface of graphite,

showing the unit cell of two atoms. (b) Direct lattice showing the periodic
arrangement of unit cells with basis vectors él and 512. (c) Reciprocal lattice

with basis vectors Aj and A, determined such that Aj-3& =A,-a =21 and
A1-512=A2-é1=0 . Also shown is the Brillouin zone obtained by drawing the
perpendicular bisectors of the lines joining the origin (0,0) to the

neighboring points on the reciprocal lattice.
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Every point on this periodic lattice formed by the unit cells can be described by a set of
integers (m,n,p) where

R= ma +na,+pag (5.2.10)

with &y =Xa+yb , &=%a-yb , a=zc

where a=3ay/2 and b=+3ay/2

Here‘c’ isthelength of the unit cell along the c-axis, which will play no important role
in this discussion since we will talk about the electronic states in the x-y plane assuming

that different planes along the c-axis are isolated (which is not too far from the truth in
real graphite). The points on the reciprocal lattice in the ky —ky, plane are given by

K= MA +NA, (5.2.11)

where (M,N) areintegersand A, A, are determined from Eq.(5.2.9):

o 25 MG

Using these basis vectors we can construct the reciproca lattice shown in Fig.5.2.4c.
The Brillouin zone for the alowed k-vectors is then obtained by drawing the
perpendicular bisectors of the lines joining the origin (0,0) to the neighboring points on
the reciprocal lattice.

The Brillouin zone tells us the range of k-values while the actual discrete vaues
of ‘k’ have to be obtained from the finite size of the direct lattice, as explained following
Eq.(5.2.5). But for a given vaue of ‘k’ how do we obtain the corresponding energy
eigenvalues? Answer: From Egs(5.2.3) and (5.2.4). The size of the matrix [h(k)]
depends on the number of basis functions per unit cell. If we use the four vaence
orbitals of Carbon (2s2py,2py,2p,) as our basis functions then we will have 4x2=8
basis functions per unit cdl (since it contains two carbon atoms) and hence 8
eigenvalues for each vaue of k.
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Itisfound, however, for graphite that the levelsinvolving 2s2p,,2py, orbitals are

largely decoupled from those involving 2p, orbitals; in other words, there are no matrix
elements coupling these two subspaces. Moreover, the levels involving 2s2py,2py
orbitals are either far below or far above the Fermi energy, so that the conduction and
vaence band levels right around the Fermi energy (which are responsible for dectrical
conduction) are essentially formed out of the 2p, orbitals (Fig.2.4.5).

This means that the conduction and vaence band states can be described quite
well by atheory that uses only one orbital (the 2p, orbital) per Carbon atom resulting in
a(2x2) matrix [h(R)] which can be written down by summing over any unit cel and dl

its four neighboring unit cells (the matrix element is assumed equal to ‘-t' between
neighboring Carbon atoms and zero otherwise):

) - [0 ] Ay e

N 0 —texp(iR-éZ)]

0 0

+[—texs(—i§-él) j +[‘te"p(iﬁ'é2) _;]

Defining hg= —-t(+ elkar | eik'é2): -t (1+ 2¢'Kxa0 coskybo)
we can write
. 0 hg
h(k) = «
ho 0

so that the eigenvalues are given by

E= +|hg|= = t\/1+ 4coskybg coskyag + 4cos? kybo

Note that we obtain two eigenvalues (one positive and one negative) for each vaue of k
resulting in two branchesin the E(R) plot (cf. Fig.5.1.5) — this is what we expect since
we have two basis functions per unit cell. We will discuss the physics of this E(R)
relation (generdly caled the energy dispersion relation) in the next chapter when we
discuss carbon nanotubes, which are basically graphite sheets rolled into cylinders. For
the moment our main purpose is to illustrate the procedure for caculating the
bandstructure using a 2-D example that involves non-trivia features beyond the 1-D
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156 Quantum Transport: Atom to Transistor

examples from the last section and yet does not pose serious problems with
visualization asthe 3-D examplein the next section.

5.3. Common semiconductors

All the common semiconductors (like Gallium Arsenide) belong to the diamond
structure which has a unit cell consisting of two atoms, a cation (like Gallium) and an
anion (like Arsenic). For eemental semiconductors like Silicon, both cationic and
anionic sites are occupied by the same atom. For each atom we need to include a least
four valence orbitalslike 3s, 3px, 3py and 3pz for Silicon. It is common to include the
next higher orbital (4sfor Silicon) aswell giving rise to what is called the sp3s* model.
In this model we have five orbitals per atom leading to 10 basis orbitals per unit cell.
Consequently the matrices [h(k)] and [Hnm] in Eq.(5.2.4) are each (10x10) in size. To
perform the summation indicated in Eq.(5.2.4) we need to figure out how the nearest
neighbors are located.

The diamond structure consists of two interpenetrating face-centered cubic
(FCC) lattices. For example, if welook at GaAs, we find that the Gallium atoms occupy
the sites on an FCC lattice. The Arsenic atoms occupy the sites of a different FCC
lattice offset from the previous one by a quarter of the distance along the body diagonal
- that is, the coordinates of this lattice can be obtained by adding (x +y + z)a/4 to those
of thefirst one. If a Gallium atom islocated at the origin (0 0 O)a/4 then there will be an
Arsenic atom located a (x+ Yy +2z)al4 which will be one of its nearest neighbors.
Actually it will have three more Arsenic atoms as nearest neighbors. To see this consider
where the nearest Gallium atoms are located. There are four of them on the X-Y face as
shown in Fig.5.3.1 whose coordinates can be written as (x+y)a2, (x-y)a2,
(-x+y)al2and (-x - y)al2.

.4— a—p .
y
Fig.5.3.1. X-Y face of a ‘ .
face-centered cubic (FCC)
riered et G -
lattice, showing the ‘
location of atoms. .

The coordinates of the corresponding Arsenic atoms are obtained by adding
(x+y+2z)a4:
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(3% +3y +2)ald, (3% -y +2)a4, (-% + 3y + 2)ald and (-% - § + 2)al4
Of these thefirst three are too far away, but the fourth one is a nearest neighbor of the
Galium atom at the origin. Similarly if we consider the neighboring Galium atoms on
the Y-Z face and the Z-X face we will find two more nearest neighbors, so that the
Gallium atom at the origin (0 0 0) has four nearest neighbor Arsenic atoms located at

(x+y+2)ad, (-x-y+2)a4, (x-y-2)a4 and (-x+y-2)a4.

Every atom in adiamond lattice has four nearest neighbors of the opposite type (cation
or anion) arranged in atetrahedron.

To see how we perform the summation in Eq.(5.2.4) let usfirst consider just the
s-orbital for each atom. The matrices [h(k)] and [Hnm] in Eq.(5.2.4) are then each

(2x2) in size. We can write [Hnn] as

|sa)  [sc)
| Sa> Esa Ess (5.3. 1a)

lsc) Ess Esc

where Esg and Egc are the energies of the 's orbitals for the anion and cation
respectively while Ess represents the overlap integral between an 's' orbital on the anion

and an''s orbital on the cation. The anion in unit cell 'n' overlaps with the cations in three
other unit cells'm'’ for which

dm—dy = (—%-9)a2, (-y-2)a2 and (-2-%)a2

Each of these contributes a[Hpm] of the form Isa)  |sc)
|sa) O Ess (5.3.1b)
s 00

Similarly the cation in unit cdl 'n' overlaps with the anions in three other unit cells 'm’
for which

dn—dn = (3+9)d2, (y+2)a2  and  (2+%)a2
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Each of these contributes a[Hpm] of the form

sa)  [sc)
|sa) O 0 (5.3.1¢)
lsc) Ess O
Adding up al these contributions we obtain
(K] = [sa)  [se)

|sa) Esa 4Essg0 (5.3.2)
|sc) 4Essg0” Esc

where 4gg = 14 ikdy | gmikdy | o-ikdg
with di=(y+2)al/2,dy=(z+%X)a/2and dz3=(x+y)a/2

To evauate the full (10x10) matrix [h(k)] including sp3s* levels we proceed
similarly. Thefina result is

) lse) [Xa)  IYa)  1za) X Yo 1zd |s) )

|sa) Esa 4Ess90 0 0 0 4Esapcdl 4Esapcd2 4Esapcd3 0 0
|sc) 4Ess00' Esc  4EpascOl’ 4Epascd2’ 4Epascg3 O 0 0 0 0
|Xa) O 4Epascdl Epa 0 0  4Exxdo 4Exyg3  4ExyQ2 0 4Epascdl
|Ya) O 4Epascg2 O Epa 0  4Exyg3 4Exxdo 4Exyd1 0 4Epascg2
|Za) O 4Epascg3 O 0 Epa 4Exyg2 4Exygl  4Exx90 0 4Epas*c03
|Xc) 4Esapcdl” O 4Exxd0’  4Exyd3 4Exyg2”  Epc 0 0 4Estapcul’ O
|Y¢) 4Esapcg2” O 4Exyg3’  4Exxg0 4Exygl’ O Epc 0 4Estapcg2’ O
|Zc) 4Esapcg3” O 4Exyg2”  4Exyo1” 4Exxgo O 0 Epc 4Estapcy3’ O
sa> 0 0 0 0 0  4Esapcdl 4Estapcd2 4Esapcd3  Esta 0
St;> 0 0 4Epast o1’ 4Epas*c92* 4Epas g3’ 0 0 0 0 Estc
(5.3.3)

Thefactors g1, g2 and g3 look much like the factor go obtained above when discussing
only the s-orbitals:

1+ e—ik.al +e—iﬁ.a2 + e ikds

499 = (5.3.49)
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However, the signs of some of the terms are negative:

491 = 1+e iR.al _e iR.az _e |R5I3 (534b)
agy = 1-e K1 g ikdy _ ik (5.3.40)
4gs = 1-e& ki _ g ikdy , o iKdy (5.3.4d)

The negative signs arise because the wavefunction for p-orbitals changes sign along one
axis and so the overlap integral has different signs for different neighbors. This aso
affects the signs of the overlap integrals appearing in the expression for [h(k)] in
Eq.(5.2.4) : the parameters Ess, Epasc and Epastc ae negative, while the remaining
parameters Esg pe, Exx , Exy and Esrgpc are are positive. Note that the vectors

di=(y+2)al2,dy=(z+X)a/2and dz=(X+y)a/2 (5.3.5)

connect the cation in one unit cell to a cation in a neighboring cdl (or an anion to an

anion). Alternaively, we could define these vectors so as to connect the nearest
neighbors - this has the effect of multiplying each of the factors go, g1, g2 and g3 by a

phase factor exp [i k.d] where d=(X+y + 2)a/ 4. This is used by most authors (see for
example, P.Vogl, H.P.Hjamarson and J.Dow, "A Semi-Empirical Tight-Binding Theory
of the Electronic Structure of Semiconductors', J. Phys. Chem. Salids, vol. 44, p.365-
378 (1983)) but it makes no real difference to the result.
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Fig.5.3.2. E (K) calculated by
finding the eigenvalues of the
matrix in Eq.(5.3.3) for each
value of K along the I'- X
(that is, from k=0to
k=k=X%X2n/a)and T-L (that
is, from k=0to
k=(X+Y+2)n/a) directions.

>

Energy (eV) ---

The former is plotted along the

1

positive axis and the latter 15
E -05 0 0.5
k (as fraction of maximum value)--->

along the negative axis.

Fig.5.3.2 shows the bandstructure E( k) calculated by finding the eigenvalues of

the matrix in Eq.(5.3.3) for each value of k dong the r-X (that is, from k = 0to k =
%2n/a)and r-L (that is, from k = 0to k = (x+9+2)n/a) directions. We have used

the parametersfor GaAsgiveninVogl et.al.

Esa= -8.3431 eV, Epa=1.0414 €V, Esrq= 8.5914 eV
Esc = -2.6569 eV, Epc = 3.6686 €V, Egt¢ = 6.7386 eV

4Egg = -6.4513 eV, 4Epa’sc =-57839 eV, 4Epas*c =-4.8077 eV

4Esa,pc =4.48¢eV, 4Eg apc = 4.8422 eV,
4Exx = 1.9546 eV and 4Exy = 5.0779 eV.
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5.4. Effect of spin-orbit coupling

The bandstructure we have obtained is reasonably accurate but does not describe
the top of the valence band very well. To obtain the correct bandstructure, it is necessary
to include spin-orbit coupling as we will describe in this section.

Spinors:  Let us first briefly explain how spin can be included explicitly into the
Schrodinger equation. Usually we caculate the energy levels from the Schrodinger
equation and fill them up with two electrons per level. More correctly we should view
each level astwo levelswith the same energy and fill them up with one electron per leve
asrequired by the exclusion principle. How could we modify the Schrodinger equation
so that each leve becomes two levels with identical energies ? The answer is smple.
Replace

E(w) = [Hop|(w) with E(g) = {Hoop :op]G)

where Hop= p?/2m+U(F) (p=-inV)

(5.4.1)

We interpret y as the up-spin component and y as the down-spin component of the
electronic wavefunction. If we now choose a basis set to obtain a matrix representation,
the matrix will be twice as big. For exampleif we were to use just the s-orbital for each
atom we would obtain a (4x4) matrix instead of the (2x2) matrix in Eq.(5.3.2):

sa) s (%) %)
0

lsa) Esa 4Essgo O (5.4.2)
|sc) 4Essg0” Esc O 0

%) O 0 Esa 4Ess00

&) O 0 4Essg0" Esc

Similarly with all 10 orbitals included, the (10x10) matrix becomes a (20x20) matrix :

[Ho (k)] = [h(';) hiﬁ)} (5.4.3)

where[h(k)] isgiven by Eq.(5.3.3).
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Spin-orbit coupling : If we were to calculate the bandstructure using EQ.(5.4.3) instead
of Eq.(5.3.3) we would get exactly the same result, except that each line would have a
second one right on top of it, which we would probably not even notice if a computer
were plotting it out. But the reason we are doing this is that we want to add something
called spin-orbit coupling to Eq.(5.4.3).

The Schrodinger equation is anon-relativistic equation. For electronstraveling &
high velocities reativigtic effects can become significant and we need to use the Dirac
equation. Typically in solids the velocities are not high enough to require this, but the

electric fields are very high near the nuclei of atoms leading to week relativigtic effects
that can be accounted for by adding a spin-orbit correction Hgg to the Schrodinger

equation:
v v v
El_| = [Hol|=| + [Heol|— 5.4.4
o) = wal )+ el 544
p2/2m+ U(F) 0
where Ho= ) (5.4.5)
0 p?/2m+ U(F)
and Ho = qh [ Expy —EyPx (Eypz - Ezpy) —i(Ezpx —Expy)
4m2C2 (Eypz - Ezpy) —i (Esz - Expz) - (Expy - Eypx)
(5.4.6)

¢ being the velocity of light in vacuum. The spin-orbit Hamiltonian Hgp is often written
as

qh = -
0 A2 ( p) (54.7)

where the Pauli spin matrices ¢ are defined as
01 0 —i 1 0
oy = [1 0} , oy = [i O] , 6, = [0 _1} (5.4.8)

It is straightforward to show that the two expressions for the spin-orbit Hamiltonian
Hso in EQs.(5.4.7) and (5.4.6) are identical. | will not try to justify the origin of the
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spin-orbit term for this would take us too far afield into the Dirac equation, but the
interested reader may find Problems P.2.2-P.2.5 (at the end of this Chapter) instructive.

Bandstructure with spin-orbit coupling: We aready have the matrix representation for
the non spin-orbit part of the Hamiltonian, HQ (EQ.(5.4.5)). It is given by EQ.(5.3.3).
We now need to find amatrix representation for Hgp and add it to HQ. Let us first see
what we would do if we wereto just use the s-orbitals for each atom. Usually the spin-
orbit matrix elements are significant only if both orbitals are centered on the same aom,
so that we expect amatrix of the form

lsa)  Isc) %) %)
|sa) a1l 0 a2 0
ls) 0 c11 0 c12
) a1 0 a2 0
EY 0 ca 0 c22

We would fill up the '11' elements of this matrix by taking the matrix elements of the 11
component of Hgp (see Eq.(5.4.6) :

a11:<5<':1|Expy _Eypx|sa> C11:<5C|Expy _Eypx|sc>

To fill up the 12" dements of this matrix we take the matrix eements of the 12
component of Hgp (see Eq.(5.4.6) :

&2 = <5a| (Eypz —Ezpy) —i (Ezpx — ExPz) |5a>
C12 = <SC| (Eypz —Ezpy) —i (Ezpx — ExPz) |Sc>

Similarly we can go on with the '21' and the '22' components. As it turns out, al these
matrix elements can be shown to be zero from symmetry arguments if we assume the
potential U(r) to be spherically symmetric as is reasonable for atomic potentials. The
sameistruefor the s* orbitals as well. However, some of the matrix elements are non-
zero when we consider the X, Y and Z orbitals. These non-zero matrix elements can dl
be expressed in terms of asingle number &, for the anionic orbitals:
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Xa) |Ya) 1Za) |Xa) |Ya) |Za)

IXa) 0  -id, O 0 0 84
IYa) 18 0 0 0 0 -is,

1za) 0 0 0 -5, i85 O (5.4.92)
Xa) 0 0o -8, O is, O

Ya) O 0 -isg -isg O 0

Za) 82 i3, O 0 0 0

and in terms of asingle number 3. for the cationic orbitals:

Xe) IYe) 1Ze)  [Xe) |Ye) |Ze)

X) 0  -id O 0 0 8¢
Vo) i% 0 0 0 0  -isde

1ze) 0 0 0 -5, 8 O (5.4.9b)
[Xc) 0 0 -5 O is O

Ye) 0 0 -id. -is; O 0

Ze) 8 i O 0 0 0

If we were to find the eigenvalues of either of these matrices we would obtain four
eigenvalues equal to + 5. (or +§,) and two eigenvalues equal to -25. (or - 25,). The
splitting between these two sets of levels is 35, (or 35,) and is referred to as the spin-
orbit splitting A (or Ay):

Ac (Or Ag) =338 (or 35,) (5.4.10)

The spin-orbit splitting is well-known from both theory and experiment for dl the
atoms. For example, Gallium has a spin-orbit splitting of .013 eV while that for Arsenic
is0.38 eV. It is now straightforward to write down the full matrix representation for
Hso making use of Egs.(5.4.8) and (5.4.9), adding it to Eq.(5.3.3) and then calculating
the bandstructure. For GaAs we obtain the result shown in Fig.5.4.1a. For comparison,
in Fig5.4.1b we have shown the results obtained directly from Eq.(5.3.3) without adding
the spin-orbit part. This is basically the same plot obtained in the last Section (see
Fig.5.3.2) except that the energy scale has been expanded to highlight the top of the
vaence band.
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w

Fig.5.5.1. (a) Bandstructure of

N

GaAs calculated taking spin-orbit

[N

interaction into account. The I'-X

o

direction is plotted along the

Energy (eV) --->

=

positive axis while the I'-L direction

is plotted along the negative axis.
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-0,5 0 .5
k (as fraction of maximum va?ue)———>

Fig.5.5.1. (b) Bandstructure

[

of GaAs calculated from Eq.
(5.2.3) without adding the

spin-orbit component.

Energy (eV) --->

05 [ 0.5
k (as fraction of maximum value)--->

Heaw hole, light hole and split-off bands: The nature of the vaence band
wavefunction near the gamma point (kx = ky = kz = 0) play a very important role in
determining the optical properties of semiconductor nanostructures. At the gamma point,
the Hamiltonian matrix has arelatively ssmple form because only gg is non-zero, while
01, 92 and g3 are each equal to zero (see Eq.(5.2.3)). Including spin-orbit coupling the
Hamiltonian decouplesinto four separate blocks at the gamma point :

Block I : Block I1 :
s fs) () [%) S %) 5 )
lsa) Esa 4Ess O 0 s;> Esta O O 0
) 4Ess Ex O O s) 0 Esc 0 0
) 0 0  Esa 4Ess ) 0 0 Esa O
&) 0 0  4Es Eg g 0 0 0 Esc
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Block 111 :

|Xa) |Ya) |za> |Xc) [Ye) |ZC>
|Xa) Epa -1 84 da 4Exx 0 0
|Ya) 1384 Epa -1 84 0 4Exx 0
|Za) 3a i 84 Epa 0 0 AExx
|XC> 4Exx 0 0 Epc -1 d¢ d¢
|YC> 0 4Exx 0 I 8¢ Epc -l 8¢
Z¢) 0 0 4Exx 8¢ i 8¢ Epc
Block IV :

[Xa) |Ya) 1Za) [Xc) Yo} 12e)
|ia> Epa I 85 - 33 4Exx 0 0
|Va> -1 84 Epa -1 84 0 4Exx 0
|Za> -04 I 84 Epa 0 0 4Exx
|ic> AExx 0 0 Epc I 8¢ - d¢
Ye) 0 4Exx 0 -i 8¢ Epc -i 8¢
|Zc> 0 0 4Exx - d¢ I 8¢ Epc

We can partially diagonalize Blocks |11 and 1V by transforming to the heavy hole (HH),
light hole (LH) and split-off (SO) basis using the transformation matrix

|HHa) [LHa) [SOa)

1/42 1/Je 1143
i/v2 -ilJ6 -il+3
0 J2/3 -1/43
0 0 0

0 0 0

0 0 0

|HHc) [LHe) [SOc)

0 0 0

0 0 0

0 0 0
1/42 1/v6 1143
i/v2 -ilJe -ily3
0 J2/3 -1/43

and the usua rule for transformation, namely, [Hlnew = [V*] [H]old [V]. The

transformed Hamiltonian for Block |11 looks like
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|HHg) |LHa) |S0a) [HHC) [LHc)  [SOc)
|HHa) Epa+ 85 0 0 4Eyx 0 0
|[LHa) O Epa+ 8a 0 0 AEyx 0
|SO4) O 0 Epa- 2 83 0 0 AExx
|HH¢) 4Exx 0 0 Epc + 8¢ 0 0
|[LHe) 0 4Exx 0 0 Epc+dc O
|sOc) O 0 4Exx 0 0 Epc-2 8¢

Note how the three bands are neatly decoupled so that a the gamma point we can label
the energy levels as HH, LH and SO. As we move away from the gamma point, the
bands are not decoupled any more and the elgenstates are represented by superpositions

of HH, LH and SO.

Similarly Block IV can be transformed using the transformation matrix

[HHa) |LHa) [SOa)

Xa) 1/v2 1/46  1/43
Ya) -i/42 i/v6 /43
|Za) 0 -y2/3 1/43
[V] =
Xc) 0 0 0
Ye) 0 0 0
|Z¢) 0 0 0
to obtain
[HHa) |LHa) |S0a)
|HHa) Epa+ 84 0 0
[CHa) 0 Epa + 83 0
|SOa) 0 0 Epa- 2 85
|HHc) 4Exx 0 0
[CHe) 0 4By 0
|SOc) 0 0 4By
datta@purdue.edu

HHc) [LHc) [SOc)
0 0
0 0
0 0

0
0
0
1/+42 1/46 1/+/3

-i/N2 0146 i/43
0 -42/3 1/43

[FAc) [FHe)  [SOc)
4Exx 0 0
0 4Exx 0
0 0 4Exx
Epc + 8¢ 0 0
0 Epc+ 8 O
0 0  Epc-23c
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It is important to note that the eigenstates (which can be identified by looking at the
columns of [V] or [V]) are not pure upspin or pure downspin states. However, we
could view the lower block [ V] as the spin-reversed counterpart of the upper block [V]
since it is straightforward to show that they are orthogonal, as we expect “up” and

“down” spin states to be.
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5.5. Supplementary notes: Dirac equation
Relativistic electrons are described by the Dirac equation

2 :
mc“ + U 0 C c(py —1i
" ) Pz (Px —ipy) v
. v _ 0 mc-+U c(px +ipy) —Cp, vy
? cp, c(px —ipy) ~mc®+U 0 ?
¢ [ c(px +ipy) —Cp, 0 —mc? + U] ¢

which can be written compactly as

. {\P} (mc2 + U) - co6p {‘P} (5.5.1)

o

Assuming U = 0 and substituting a plane wave solution of the form

o Lo NE

we can show that the dispersion relation is given by

— mC2
E(K) = +vm2c?+c2h2? /

which has two branches as shown.

The negative branch is viewed as being completely filled even in vacuum. The
Separation between the two branches is 2mc? which is approximately 1 MeV, wdl
outside the range of energies encountered in solid-state experiments. In high energy
experiments eectrons are excited out of the negative branch into the postive branch
resulting in the creation of electron-positron pairs. But in common solid-state
experiments energy exchanges are less than 10 eV and the negative branch provides an

where ¥ = {W} and (0]
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inert background. At energies around E = mc? , we can do a binomia expansion of

Eq.(5.5.1) to obtain the non-relativistic parabolic relation (apart from an additive
constant equal to the relativistic rest energy m cz) ;

E(K) = mc2+(h2k2/2m)

Rdativistic corrections like the spin-orbit term are obtained by starting from the Dirac
equations and eliminating the component @ using approximate procedures vaid a

energies sufficiently small compared tom c?.

Non-relativistic approximation to the Dirac equation: Starting from Eq.(5.5.1) we can
show that

-1
;z_u] 58] {¥}

E{¥} = (mcz+U){‘P} + [ca.r)][amc

Setting E ~mc?on the right hand side, we obtain the lowest order non-relativistic
approximation

E{¥} = (mc2+U){‘P} + %{\p} (5.5.2)

which can be smplified to yield Eq.(5.4.1):

U+p?/2m 0

L, |iw
0 U+p°/2m

emetn - |

noting that ) p2 0
[6p]° = [ )
0O p

Effect of magnetic field: One question we will not discuss much in this book is the
effect of a magnetic field on the eectron energy levels. The effect is incorporated into
the Dirac equation by replacing p with p+ qA:
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E{T} ) (me?+u)1 co(p+aA) {\P}

06.(ﬁ+ qA) (— ch+U)I ¢
Asbefore (cf. Eqg.(5.5.2)) we can obtain the lowest order non-relativistic approximation

[6.(E)+ qA)] ?

E{¥} = (m02+U){‘P} + [y}

which can be smplified to yield the Pauli equation:

(E—mcz){‘P} = [U+(i)+q,5\)2/2m][l]{‘l’} + ug6B{¥!

where ug=qn/2m (Bohr magneton) ,and B= V x A

The second term g 6B is caled the Zeeman term. Note that the spin-orbit term in
Eq.(5.4.7) can be viewed as the Zeeman term due to an effective magnetic field given by

Bsp = (EXEJ)Ich2

Indeed, one way to rationalize the spin-orbit termis to say that an electron in an eectric
field sees this effective magnetic field due to “relativistic effects’. To obtain the spin-
orbit term directly from the Dirac equation it is necessary to go to the next higher order
[5.3].
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Exercises

E.5.1. Set up the (2x2) matrix given in EQ.(5.1.10) for the one-dimensiona dimerized
toy solid and plot the E(K) relation, cf. Fig.5.1.5.

E.5.2. Set up the (10x10) matrix given in Eq.(5.3.3) using the parameters for GaAs
given in the text and plot the dispersion relation E(kx,ky,kz) dong T-X and T-L as

shownin Fig.5.3.2.
E.5.3. Set up the (20x20) matrix including the spin-orbit coupling as described in

Section 4.4 for GaAs and plot E vs. k along T'-X and T-L for GaAs (Ac = .013 eV
and A g=.38¢€V) and compare with Fig.5.4.1a, b.
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