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5 / Bandstructure

5.1. Toy examples

5.2. General result

5.3. Common semiconductors

5.4. Effect of spin-orbit coupling

5.5. Supplementary notes: Dirac equation

In the last chapter we have seen how the atomic orbitals can be used as a basis to write

down a matrix representation for the Hamiltonian operator, which can then be

diagonalized to find the energy eigenvalues. In this chapter we will show how this

approach can be used to calculate the energy eigenvalues for an infinite periodic solid.

We will first use a few 'toy' examples to show that the bandstructure can be calculated

by solving a matrix eigenvalue equation of the form

  
E h kϕ ϕ0 0( ) = [ ] ( )( )

r

where
  

h k H enm
m

i k dm dn( ) .( )r r r r

[ ] = [ ]∑ −

The matrix [h(  
r
k)] is (bxb) in size, 'b' being the number of basis orbitals per unit cell.

The summation over 'm' runs over all neighboring unit cells (including itself) with which
cell 'n' has any overlap (that is, for which Hnm is non-zero). The sum can be evaluated

choosing any unit cell 'n' and the result will be the same because of the periodicity of the

lattice. The bandstructure can be plotted out by finding the eigenvalues of the (bxb)

matrix [h(  
r
k)]  for each value of   

r
k and it will have 'b' branches, one for each eigenvalue.

This is the central result which we will first motivate using toy examples (Section 5.1),

then formulate generally for periodic solids (Section 5.2), and then use to discuss the

bandstructure of 3-D semiconductors (Section 5.3). We end in Section 5.4 with a

discussion of spin-orbit coupling and its effect on the energy levels in semiconductors.  
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5.1. Toy examples

Let us start with a toy one-dimensional solid composed of 'N' atoms (see

Fig.5.1.1).

a

1 2 N

If we use one orbital per atom we can write down a (NxN) Hamiltonian matrix using

one orbital per atom:

H = 1 2 ... N − 1 N

1 E0  Ess    0 Ess

2 Ess E0    0 0

... ... ... (5.1.1)

N − 1   0    0    E0 Ess

N  Ess    0    Ess E0

We have used what is called the periodic boundary condition (PBC), namely, that the

Nth atom wraps around and overlaps the 1st atom like a ring. This leads to non-zero

values for the matrix elements H N1,  and HN,1 which would normally be zero if the solid

were abruptly truncated. The PBC is usually not realistic, but if we are discussing the

bulk properties of a large solid then the precise boundary condition at the surface does

not matter and we are free to use whatever boundary conditions makes the mathematics

the simplest, which happens to be the PBC.

So what are the eigenvalues of the matrix [H] given in Eq.(5.1.1) ? This is

essentially the same matrix that we discussed in Chapter 1 in connection with the finite

difference method. If we find the eigenvalues numerically we will find that they can all

be written in the form (α: integer)

Eα  = E0 + 2Ess cos ( kα a) where kα a = α2 π /N (5.1.2)

Fig.5.1.1. A

one-dimensional solid
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The values of kα a run from - π  to + π  and are spaced by 2 π /N as shown in Fig.5.1.2.

If N is large the eigenvalues are closely spaced (as on the left); if N is small the

eigenvalues are further apart (as on the right).

Why is it that we can write down the eigenvalues of this matrix so simply ? The
reason is that because of its periodic nature, the matrix equation E ψ( ) = [H] ψ( )
consists of a set of N equations which are all identical in form and can all be written as

(n = 1,2,....N)

E E E En n ss n ss nψ ψ ψ ψ= + +− +0 1 1 (5.1.3)

This set of equations can be solved analytically by the ansatz:

 ψ ψn
iknae= 0 (5.1.4)

Substituting Eq.(5.1.4) into (5.1.3) and canceling the common factor exp[ikna] we

obtain

E E E e E ess
ika

ss
ikaψ ψ ψ ψ0 0 0 0 0= + +−

that is, E = E0 + 2Ess cos (ka)

This shows us that a solution of the form shown in Eq.(5.1.4) will satisfy our set of

equations for any value of ‘k’. But what restricts the number of eigenvalues to a finite

number (as it must be for a finite-sized matrix)?

This is a result of two factors. Firstly, periodic boundary conditions require the

wavefunction to be periodic with a period of ‘Na’ and it is this finite lattice size that

restricts the allowed values of ‘k’ to the discrete set kα a = α2 π /N (see Eq.(5.1.2)).

Secondly, values of ‘ka’ differing by 2 π  do not represent distinct states on a discrete

lattice. The wavefunctions

exp ( )i k xα  and exp ( / )i k a xα π+ ( )[ ]2

represent the same state because at any lattice point xn = na,

exp ( )i k xnα  = exp ( / )i k a xnα π+ ( )[ ]2
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Fig.5.1.2. The solid lines in both (a) and (b) are plots of E vs. ka/ π  from

Eq.(5.1.2) with E0 = 0, Ess = - 1. The x's denote the eigenvalues of the

matrix in Eq.(3.2.1) with (a) N=100 and with (b) N=20.
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Fig.5.1.3. Same as Fig.5.1.2b with E0 = 0 and (a) Ess = -1

and with (b) Ess = +1.

ka /π ka /π

ka /π ka /π

E

E



datta@purdue.edu All Rights Reserved

145Chapter 5 / Bandstructure

They are NOT equal between two lattice points and thus represent distinct states in a

continuous lattice. But once we adopt a discrete lattice, values of kα  differing by 2 π/a

represent identical states and only the values of kαa within a range of 2π  yield

independent solutions. In principle, any range of size 2π  is acceptable, but it is

common to restrict the values of kαa to the range (sometimes called the first Brillouin

zone)

− π  ≤ ka < + π  for periodic boundary conditions (5.1.5)

It is interesting to note that the finite range of the lattice (“Na”) leads to a discreteness

(in units of “2π /Na”) in the allowed values of ‘k’ while the discreteness of the lattice

(“a”) leads to a finite range of allowed ‘k’ ( “2π /a”). The number of allowed values

of ‘k’

2 2π π/ / /a Na( ) ( ) = N

is exactly the same as the number of points in the real space lattice. This ensures that the

number of eigenvalues (which is equal to the number of allowed ‘k’ values) is equal to

the  size of the matrix [H] (determined by the number of lattice points).

When do bands run downwards in k ?  In Fig.5.1.1 we have assumed Ess to be

negative which is what we would find if we used say Eq.(4.1.11c) to evaluate it (note
that the potentials UL or UR are negative) and the atomic orbitals were 's' orbitals. But if

the atomic orbitals are 'px' orbitals as shown in Fig.5.1.3b then the sign of the overlap

integral (Ess) would be negative and the plot of E(k) would run downwards in 'k' as

shown. Roughly speaking this is what happens in the valence band of common

semiconductors which are formed primarily out of atomic 'p' orbitals.
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Lattice with a basis - the Peierls' distortion:

a

b

Consider next a one-dimensional solid whose unit cell consists of two atoms as

shown in Fig.5.1.4. Actually one-dimensional structures like the one shown in Fig.5.1.1

tend to distort spontaneously into the structure shown in Fig.5.1.4 - a phenomenon that

is generally referred to as the Peierls' distortion. We will not go into the energetic

considerations that cause this to happen. Our purpose is simply to illustrate how we can

find the bandstructure for a solid whose unit cell contains more than one basis orbital.

Using one orbital per atom we can write the matrix representation of [H] as

[H] = 1A 1B 2A 2B 3A 3B ...

1A E0 Ess  0  0  0  0 ....

1B Ess E0  Ess'  0  0  0 ....

2A 0 Ess'  E0  Ess  0  0 .... (5.1.6)

2B 0 0  Ess  E0  Ess'  0 ....

3A  0 0 0 Ess'  E0  Ess ....

3B  0 0  0 0 Ess  E0 ....

Unlike the matrix in Eq.(5.1.1) there are two different overlap integrals Ess and Ess'

appearing alternately. As such the ansatz in Eq.(5.1.4) cannot be used directly. But we

could combine the elements of the matrix into (2x2) blocks and rewrite it in the form

Fig.5.1.4. (a) A one-dimensional solid whose unit cell consists of two atoms

(b) Basic lattice defining the periodicity of the solid.

X XXXX

(a)

(b)
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H = 1 2 3 ...
1 H11 H12  0 ....

2 H21 H22  H23 .... (5.1.7)

3 0 H32  H33 ....

where

Hnn =
E0 Ess

Ess E0









 Hn,n+1 =

0 0

Ess
' 0













Hn,n−1 =
0 Ess

'

0 0













The matrix in Eq.(5.1.7) is now periodic and we can write the matrix equation E ψ( ) =
[H] ψ( ) in the form

E H H Hn nn n n n n n n nϕ ϕ ϕ ϕ= + +− − + +, ,1 1 1 1 (5.1.8)

where ϕn represents a (2x1) column vector and the element Hnm is a (2x2) matrix. We

can solve this set of equations using the ansatz : ϕ ϕn
iknae= 0 (5.1.9)

Substituting Eq.(5.1.9) into (5.1.8) and canceling the common factor exp[ikna] we

obtain

E H H e H enn n n
ika

n n
ikaϕ ϕ ϕ ϕ0 0 1 0 1 0= + +−

−
+, ,

that is, E
E E E e

E E e E

ss ss
ika

ss ss
ika

ϕ ϕ0
0

0
0{ } =

+

+











{ }

−'

'

Fig.5.1.5. Bandstructure

for the "dimerized" one-

dimensional solid shown in

Fig.5.1.4 plotted from Eq.

(5.1.10) using E0 = 0,

Ess = 2, Ess' = 1.
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We can now find the eigenvalues by setting the determinant to zero:

det
'

'

E E E E e

E E e E E

ss ss
ika

ss ss
ika

0

0

− +

+ −













−

 = 0

that is, E E E E E E kass ss ss ss= ± + +



0

2 2 1 2
2' '

/
cos (5.1.10)

Eq.(5.1.10) gives us a E(k) diagram with two branches as shown in Fig.5.1.5.

5.2. General result

It is straightforward to generalize this procedure for calculating the

bandstructure of any periodic solid with arbitrary number of basis functions per unit

cell. Consider any particular unit cell ‘n’ (Fig.5.2.2) connected to its neighboring unit
cells ‘m’ by a matrix Hnm[ ] of size (bxb), ‘b’ being the number of basis functions per

unit cell. We can write the overall matrix equation in the form

H Enm
m

m n[ ] { } = { }∑ ϕ ϕ (5.2.1)

where ϕm{ } is a (bx1) column vector denoting the wavefunction in unit cell ‘m’.

m

Hnm[ ]

n

Fig.5.2.1. Schematic picture

showing a unit cell ‘n’  connected

to its neighboring unit cells ‘m’ by

a matrix Hnm[ ] of size (bxb), ‘b’

being the number of basis

functions per unit cell. T h e

configuration of neighbors will

differ from one solid to another,

but in a periodic solid t h e

configuration is identical

regardless of which ‘n’ we choose.
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The important insight is the observation that this set of equations can be solved by the

ansatz

  ϕ ϕm
i k dm{ } = { }0 exp .
r r

(5.2.2)

provided Eq.(5.2.1) looks the same in every unit cell ‘n’. This is a consequence of the

periodicity of the lattice and it ensures that when we substitute our ansatz Eq.(5.2.2) into

Eq.(5.2.1) we obtain

  
E h kϕ ϕ0 0{ } = [ ] { }( )

r
 (5.2.3)

with
  

h k H enm
m

i k dm dn( ) .( )r r r r

[ ] = [ ]∑ −
 (5.2.4)

independent of which unit cell ‘n’ we use to evaluate the sum in Eq.(5.2.4). This is the

central result underlying the bandstructure of periodic solids. The summation over 'm'

in Eq,.(5.2.4) runs over all neighboring unit cells (including itself) with which cell 'n' has
any overlap (that is, for which Hnm is non-zero). The size of the matrix [h(  

r
k)] is (bxb),

'b' being the number of basis orbitals per unit cell. The bandstructure can be plotted out

by finding the eigenvalues of the (bxb) matrix [h(  
r
k)]  for each value of   

r
k and it will

have 'b' branches one for each eigenvalue.

Allowed values of k: In connection with the 1-D example, we explained how ‘k’ has

only a finite number of allowed values equal to the number of unit cells in the solid. To

reiterate the basic result, the finite range of the lattice (“Na”) leads to a discreteness (in

units of “ 2π /Na”) in the allowed values of ‘k’ while the discreteness of the lattice

(“a”) leads to a finite range of allowed ‘k’ ( “2π /a”). How do we generalize this

result beyond one dimension?

This is fairly straightforward if the solid forms a rectangular (or a cubic) lattice

as shown in Fig.5.2.2a. In 2-D the allowed values of   
r
k  can be written as

  

r
k x m Ma y n Nb

m n
[ ] = ( ) + ( )

,
ˆ / ˆ /2 2π π (5.2.5)

where (m,n) are a pair of integers while M, N represent the number of unit cells stacked

along the x- and y-direction respectively. This seems like a reasonable extension of the
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1-D result (cf. Eq.(5.1.2): k aα α π= ( )2 / . Formally we could derive Eq.(5.2.5) by

writing (  
r
L x Ma1 = ˆ  ,   

r
L y Nb2 = ˆ )

  
r r
k L m k m M ax. /1 2 2= → =π π

  

r r
k L n k n N by. /2 2 2= → =π π

Brillouin zone: Formally, the general procedure for constructing the Brillouin zone

starts by constructing the reciprocal lattice (Fig.5.2.2b) in k-space, which can be viewed

as the Fourier transform of the direct lattice. In 1-D we know that a set of impulses

separated by ‘a’

has a Fourier transform consisting of a set of impulses separated by 2π /a

a

b

  
r
L2

  
r
L1

a

x

Direct lattice

o ooooo

2π /a

k

Reciprocal lattice

Fig.5.2.2.  A finite 2 - D

rectangular lattice with M

unit cells stacked along

the x-direction and N unit

cells stacked along the y-

direction:

(  
r
L x Ma1 = ˆ ,   

r
L y Nb2 = ˆ )
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We could then construct the first Brillouin zone centered around k = 0 by connecting it

to the neighboring points on the reciprocal lattice and drawing their bisectors:

Similarly for a two dimensional rectangular lattice we can construct a reciprocal lattice

and then obtain the first Brillouin zone by drawing perpendicular bisectors of the lines
joining   

r
k = ( )0 0,  to the neighboring points on the reciprocal lattice:

Fig.5.2.3. (a) Rectangular lattice in real space.

(b) Corresponding reciprocal lattice.

The Brillouin zone obtained from this procedure defines the allowed range of values of

  
r
k

− ≤ < +π πk ax and − ≤ < +π πk by (5.2.6)

which agrees with what one might write down from a heuristic extension of Eq.(5.1.5).

Reciprocal
lattice

o o

+ π /a− π /a

oooo k

Brillouin zone

ooo

oo

o oo

2π /a

2π /b

Brillouin
   Zone

o

a

b

Direct lattice
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Reciprocal lattice: In general, if the direct lattice is not rectangular or cubic, it is not

possible to construct the reciprocal lattice quite so simply by inspection. We then need

to adopt a more formal procedure as follows. We first note that any point on a direct

lattice in 3-D can be described by a set of three integers (m,n,p) such that

  
r r r r
R m a n a p a= + +1 2 3 (5.2.7)

where   
r r r
a a a1 2 3, ,  are called the basis vectors of the lattice. The points on the reciprocal

lattice can be written as

  
r r r r
K M A N A P A= + +1 2 3 (5.2.7)

where (M,N,P) are integers and   
r r r
A A A1 2 3, ,  are determined such that

  

r r
A aj i ij⋅ = 2π δ (5.2.8)

δij being the Kronecker delta (equal to one if i = j, and equal to zero if i ≠ j). Eq.(5.2.8)

can be satisfied by writing

         
  

r r r

r r rA
a x a

a a x a1
2 3

1 2 3

2
= ( )

⋅ ( )
π

 ,  
  

r r r

r r rA
a x a

a a x a2
3 1

2 3 1

2
= ( )

⋅ ( )
π

  ,  
  

r r r

r r rA
a x a

a a x a3
1 2

3 1 2

2
= ( )

⋅ ( )
π

   (5.2.9)

It is easy to see that this formal procedure for constructing the reciprocal lattice

leads to the lattice shown in Fig.5.2.3b if we assume the real space basis vectors to be

  
r
a x a1 = ˆ  ,   

r
a y b2 = ˆ  ,   

r
a z c3 = ˆ . Eq, (5.2.9) then yields

  

r
A x a1 2= ( )ˆ /π  ,   

r
A y b2 2= ( )ˆ /π  ,   

r
A z c3 2= ( )ˆ /π .

Using Eq.(5.2.7) we can now set up the reciprocal lattice shown in Fig.5.2.3b. Of

course, in this case we do not really need the formal procedure. The real value of the

formal approach lies in handling non-rectangular lattices, as we will now illustrate with a

2-D example.

A 2-D example: The carbon atoms on the surface of a sheet of graphite are arranged in

the hexagonal pattern shown in Fig.5.2.4a. It can be seen that  the structure is not really

periodic. Adjacent carbon atoms do not have identical environments. But if we lump two
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atoms together into a unit cell then the lattice of unit cells is periodic: every site has an

identical environment (Fig.5.2.4b).

Fig.5.2.4. (a) Arrangement of carbon atoms on the surface of graphite,

showing the unit cell of two atoms. (b) Direct lattice showing the periodic

arrangement of unit cells with basis vectors   
r
a1 and   

r
a2. (c) Reciprocal lattice

with basis vectors   
r
A1 and   

r
A2  determined such that   

r r r r
A a A a1 1 2 2 2⋅ = ⋅ = π  and

  
r r r r
A a A a1 2 2 1 0⋅ = ⋅ =  . Also shown is the Brillouin zone obtained by drawing the

perpendicular bisectors of the lines joining the origin (0,0) to the

neighboring points on the reciprocal lattice.

( a , - b )

( a , b )

  
r
a2

  
r
a1

a0

y

x

(a) Atomic arrangement on surface of graphite

(b) Lattice showing
arrangement of unit cells

0 2 3, /−( )π b

− −( )π π/ , /a b3

π π/ , /a b3( )

  
r
A2

  
r
A1

o oo

oo

oo

0 2 3, /π b( )

(c) Reciprocal lattice

Unit Cell
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Every point on this periodic lattice formed by the unit cells can be described by a set of

integers (m,n,p) where

  
r r r r
R m a n a p a= + +1 2 3 (5.2.10)

with   
r r r
a x a y b a x a y b a z c1 2 3= + = − =ˆ ˆ , ˆ ˆ , ˆ

where a a and b a≡ ≡3 2 3 20 0/ /

Here ‘c’ is the length of the unit cell along the c-axis, which will play no important role

in this discussion since we will talk about the electronic states in the x-y plane assuming

that different planes along the c-axis are isolated (which is not too far from the truth in
real graphite). The points on the reciprocal lattice in the k kx y−  plane are given by

  
r r r
K M A N A= +1 2 (5.2.11)

where (M,N) are integers and   
r r
A A1 2,  are determined from Eq.(5.2.9):

         
  

r r

r rA
a x z

a a x z
x

a
y

b1
2

1 2

2
= ( )

⋅ ( )
=







+






π π πˆ

ˆ
ˆ ˆ

  

r r

r rA
z x a

a z x a
x

a
y

b2
1

2 1

2
= ( )

⋅ ( )
=







−






π π πˆ

ˆ
ˆ ˆ  

Using these basis vectors we can construct the reciprocal lattice shown in Fig.5.2.4c.

The Brillouin zone for the allowed k-vectors is then obtained by drawing the

perpendicular bisectors of the lines joining the origin (0,0) to the neighboring points on

the reciprocal lattice.

The Brillouin zone tells us the range of k-values while the actual discrete values

of ‘k’ have to be obtained from the finite size of the direct lattice, as explained following

Eq.(5.2.5). But for a given value of ‘k’ how do we obtain the corresponding energy

eigenvalues? Answer: From Eqs.(5.2.3) and (5.2.4). The size of the matrix 
  
h k( )

r[ ]
depends on the number of basis functions per unit cell. If we use the four valence
orbitals of Carbon (2 2 2 2s p p px y z, , , ) as our basis functions then we will have 4x2=8

basis functions per unit cell (since it contains two carbon atoms) and hence 8

eigenvalues for each value of k.
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It is found, however, for graphite that the levels involving 2 2 2s p px y, ,  orbitals are

largely decoupled from those involving 2pz orbitals; in other words, there are no matrix
elements coupling these two subspaces. Moreover, the levels involving 2 2 2s p px y, ,

orbitals are either far below or far above the Fermi energy, so that the conduction and

valence band levels right around the Fermi energy (which are responsible for electrical

conduction) are essentially formed out of the 2pz orbitals (Fig.2.4.5).

This means that the conduction and valence band states can be described quite

well by a theory that uses only one orbital (the 2pz orbital) per Carbon atom resulting in

a (2x2) matrix 
  
h k( )

r[ ]  which can be written down by summing over any unit cell and all

its four neighboring unit cells (the matrix element is assumed equal to ‘-t’ between

neighboring Carbon atoms and zero otherwise):

       

  

h k
t

t

t ik a t ik a

t ik a

t

t ik a

( )
exp exp

exp exp

r
r r r r

r r r r

[ ] =
−

−








 +

− ⋅( )











+
− ⋅( )











+
− − ⋅( )













+
−

− − ⋅( )










0

0

0

0 0

0

0 0

0 0

0

0

0

1 2

1 2




Defining   
h0 ≡ − t (1 + ei

r
k.

r
a1 + ei

r
k.

r
a2 ) = − t (1 + 2eikxa0 cos kyb0 )

we can write

  

h(
r
k) =

0 h0

h0
* 0













so that the eigenvalues are given by

E = ± h0 = ± t 1 + 4 cos kyb0 cos kxa0 + 4 cos2 kyb0

Note that we obtain two eigenvalues (one positive and one negative) for each value of   
r
k

resulting in two branches in the   E k( )
r

 plot (cf. Fig.5.1.5) – this is what we expect since

we have two basis functions per unit cell. We will discuss the physics of this   E k( )
r

relation (generally called the energy dispersion relation) in the next chapter when we

discuss carbon nanotubes, which are basically graphite sheets rolled into cylinders. For

the moment our main purpose is to illustrate the procedure for calculating the

bandstructure using a 2-D example that involves non-trivial features beyond the 1-D
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examples from the last section and yet does not pose serious problems with

visualization as the 3-D example in the next section.

5.3. Common semiconductors

All the common semiconductors (like Gallium Arsenide) belong to the diamond

structure which has a unit cell consisting of two atoms, a cation (like Gallium) and an

anion (like Arsenic). For elemental semiconductors like Silicon, both cationic and

anionic sites are occupied by the same atom. For each atom we need to include at least
four valence orbitals like 3s, 3px, 3py and 3pz for Silicon. It is common to include the

next higher orbital (4s for Silicon) as well giving rise to what is called the sp3s* model.

In this model we have five orbitals per atom leading to 10 basis orbitals per unit cell.
Consequently the matrices [h(  

r
k)] and [Hnm] in Eq.(5.2.4) are each (10x10) in size. To

perform the summation indicated in Eq.(5.2.4) we need to figure out how the nearest

neighbors are located.

The diamond structure consists of two interpenetrating face-centered cubic

(FCC) lattices. For example, if we look at GaAs, we find that the Gallium atoms occupy

the sites on an FCC lattice. The Arsenic atoms occupy the sites of a different FCC

lattice offset from the previous one by a quarter of the distance along the body diagonal

- that is, the coordinates of this lattice can be obtained by adding ( x̂ + ŷ + ẑ )a/4 to those

of the first one. If a Gallium atom is located at the origin (0 0 0)a/4 then there will be an

Arsenic atom located at ( x̂ + ŷ + ẑ )a/4 which will be one of its nearest neighbors.

Actually it will have three more Arsenic atoms as nearest neighbors. To see this consider

where the nearest Gallium atoms are located. There are four of them on the X-Y face as

shown in Fig.5.3.1 whose coordinates can be written as ( x̂ + ŷ )a/2, ( x̂ − ŷ )a/2,

( −x̂ + ŷ)a/2 and ( −x̂ − ŷ )a/2.

a

x

y

The coordinates of the corresponding Arsenic atoms are obtained by adding

( x̂ + ŷ + ẑ )a/4 :

Fig.5.3.1. X-Y face of a

face-centered cubic (FCC)

lattice, showing the

location of atoms.
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( 3x̂ + 3ŷ + ẑ )a/4, ( 3x̂ − ŷ + ẑ )a/4, ( −x̂ + 3ŷ + ẑ)a/4 and ( −x̂ − ŷ + ẑ)a/4

Of these the first three are too far away, but the fourth one is a nearest neighbor of the

Gallium atom at the origin. Similarly if we consider the neighboring Galium atoms on

the Y-Z face and the Z-X face we will find two more nearest neighbors, so that the

Gallium atom at the origin (0 0 0) has four nearest neighbor Arsenic atoms located at

( x̂ + ŷ + ẑ )a/4, ( −x̂ − ŷ + ẑ)a/4, ( x̂ − ŷ − ẑ )a/4 and ( −x̂ + ŷ − ẑ)a/4.

Every atom in a diamond lattice has four nearest neighbors of the opposite type (cation

or anion) arranged in a tetrahedron.

To see how we perform the summation in Eq.(5.2.4) let us first consider just the
s-orbital for each atom. The matrices [h(  

r
k)] and [Hnm] in Eq.(5.2.4) are then each

(2x2) in size. We can write [Hnn] as

 sa sc

sa Esa        Ess (5.3.1a)

sc       Ess Esc

where Esa and Esc are the energies of the 's' orbitals for the anion and cation

respectively while Ess represents the overlap integral between an 's' orbital on the anion

and an 's' orbital on the cation. The anion in unit cell 'n' overlaps with the cations in three

other unit cells 'm' for which

  

r
dm −

r
dn  = ( −x̂ − ŷ )a/2,  ( −ŷ − ẑ )a/2 and ( −ẑ − x̂ )a/2

Each of these contributes a [Hnm] of the form sa sc

sa  0          Ess (5.3.1b)

sc        0  0

Similarly the cation in unit cell 'n' overlaps with the anions in three other unit cells 'm'

for which

  

r
dm −

r
dn  = ( x̂ + ŷ )a/2,  ( ŷ + ẑ)a/2 and ( ẑ + x̂)a/2
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Each of these contributes a [Hnm] of the form

sa sc

sa  0          0    (5.3.1c)

sc        Ess  0

Adding up all these contributions we obtain
      [h(  

r
k)] =   sa        sc

       sa  Esa      4Essg0    (5.3.2)

       sc  4Essg0*   Esc

where   4g0 ≡ 1 + e− i
r
k.

r
d1 + e− i

r
k.

r
d2 + e− i

r
k.

r
d3

with   

r
d1 ≡ (ŷ + ẑ) a / 2,   

r
d2 ≡ (ẑ + x̂) a / 2  and   

r
d3 ≡ (x̂ + ŷ) a / 2

To evaluate the full (10x10) matrix [h(  
r
k)] including sp3s* levels we proceed

similarly. The final result is

sa sc Xa     Ya          Za Xc    Yc         Zc sa
*    sc

*

sa Esa     4Essg0    0        0 0         4Esapcg1   4Esapcg2   4Esapcg3   0      0

sc    4Essg0* Esc 4Epascg1*   4Epascg2*   4Epascg3*    0        0 0             0      0

Xa 0      4Epascg1  Epa       0  0         4Exxg0   4Exyg3      4Exyg2    0   4Epas*cg1

Ya 0      4Epascg2    0      Epa             0         4Exyg3   4Exxg0      4Exyg1    0   4Epas*cg2

Za 0      4Epascg3    0        0 Epa      4Exyg2   4Exyg1      4Exxg0     0   4Epas*cg3

Xc   4Esapcg1*   0        4Exxg0*     4Exyg3*   4Exyg2*    Epc        0 0       4Es*apcg1*      0

Yc   4Esapcg2*   0        4Exyg3*     4Exxg0*   4Exyg1*      0        Epc 0       4Es*apcg2*      0

Zc   4Esapcg3*   0        4Exyg2*     4Exyg1*   4Exxg0*      0        0 Epc    4Es*apcg3*      0

sa
* 0    0    0        0 0        4Es*apcg1  4Es*apcg2  4Es*apcg3    Es*a        0

sc
* 0    0     4Epas*cg1*  4Epas*cg2*  4Epas*cg3*    0        0 0             0    Es*c

(5.3.3)

The factors g1, g2 and g3 look much like the factor g0 obtained above when discussing

only the s-orbitals:

  4 10
1 2 3g e e eik d ik d ik d≡ + + +− − −

r r r r r r
. . . (5.3.4a)
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However, the signs of some of the terms are negative:

  4g1 ≡ 1 + e− i
r
k.

r
d1 − e− i

r
k.

r
d2 − e− i

r
k.

r
d3 (5.3.4b)

  4g2 ≡ 1 − e− i
r
k.

r
d1 + e− i

r
k.

r
d2 − e− i

r
k.

r
d3 (5.3.4c)

  4g3 ≡ 1 − e− i
r
k.

r
d1 − e− i

r
k.

r
d2 + e− i

r
k.

r
d3 (5.3.4d)

The negative signs arise because the wavefunction for p-orbitals changes sign along one

axis and so the overlap integral has different signs for different neighbors. This also

affects the signs of the overlap integrals appearing in the expression for [h(  
r
k)] in

Eq.(5.2.4) : the parameters Ess, Epa,sc and Epas*c are negative, while the remaining

parameters Esa,pc, Exx , Exy and Es*apc are are positive. Note that the vectors

  

r
d1 ≡ (ŷ + ẑ) a / 2,   

r
d2 ≡ (ẑ + x̂) a / 2  and   

r
d3 ≡ (x̂ + ŷ) a / 2 (5.3.5)

connect the cation in one unit cell to a cation in a neighboring cell (or an anion to an

anion). Alternatively, we could define these vectors so as to connect the nearest
neighbors - this has the effect of multiplying each of the factors  g0, g1, g2 and g3 by a

phase factor exp [i  
r
k.

r
d] where   

r
d = (x̂ + ŷ + ẑ)a / 4 . This is used by most authors (see for

example, P.Vogl, H.P.Hjalmarson and J.Dow, "A Semi-Empirical Tight-Binding Theory

of the Electronic Structure of Semiconductors", J. Phys. Chem. Solids, vol. 44, p.365-

378 (1983)) but it makes no real difference to the result.
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Fig.5.3.2 shows the bandstructure E(  
r
k) calculated by finding the eigenvalues of

the matrix in Eq.(5.3.3) for each value of   
r
k along the Γ-X  (that is, from   

r
k = 0 to   

r
k =

x̂ 2π / a ) and Γ-L (that is, from   
r
k = 0 to   

r
k = (x̂ + ŷ + ẑ)π / a ) directions. We have used

the parameters for GaAs given in Vogl et.al.

Esa =  -8.3431 eV, Epa = 1.0414 eV, Es*a =  8.5914 eV

Esc =  -2.6569 eV, Epc = 3.6686 eV, Es*c = 6.7386 eV

4Ess =  -6.4513 eV, 4Epa,sc = -5.7839 eV, 4Epas*c = -4.8077 eV

4Esa,pc = 4.48 eV, 4Es*apc = 4.8422 eV,

4Exx = 1.9546 eV and 4Exy = 5.0779 eV.

Fig.5.3.2. E (  
r
k ) calculated by

finding the eigenvalues of the

matrix in Eq.(5.3.3) for each

value of   
r
k  along the Γ - X

(that is, from   
r
k  = 0 to

  
r
k  =   

r
k x a= ˆ /2π ) and Γ -L (that

is, from   
r
k  = 0 to

  
r
k x y z a= + +( ˆ ˆ ˆ) /π ) directions.

The former is plotted along the

positive axis and the latter

along the negative axis.
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5.4. Effect of spin-orbit coupling

The bandstructure we have obtained is reasonably accurate but does not describe

the top of the valence band very well. To obtain the correct bandstructure, it is necessary

to include spin-orbit coupling as we will describe in this section.

Spinors:  Let us first briefly explain how spin can be included explicitly into the

Schrodinger equation. Usually we calculate the energy levels from the Schrodinger

equation and fill them up with two electrons per level. More correctly we should view

each level as two levels with the same energy and fill them up with one electron per level

as required by the exclusion principle. How could we modify the Schrodinger equation

so that each level becomes two levels with identical energies ? The answer is simple.

Replace

E ψ( ) = Hop[ ] ψ( ) with E
ψ
ψ







=
Hop 0

0 Hop













ψ
ψ







(5.4.1)
where

  
Hop = p2 / 2m + U(

r
r ) (  

r
p ≡ −ih

r
∇)

We interpret ψ  as the up-spin component and ψ  as the down-spin component of the

electronic wavefunction. If we now choose a basis set to obtain a matrix representation,

the matrix will be twice as big. For example if we were to use just the s-orbital for each

atom we would obtain a (4x4) matrix instead of the (2x2) matrix in Eq.(5.3.2):

sa sc sa sc

sa Esa      4Essg0   0   0 (5.4.2)

sc     4Essg0*  Esc   0   0

sa   0     0 Esa      4Essg0
sc   0     0    4Essg0*  Esc

Similarly with all 10 orbitals included, the (10x10) matrix becomes a (20x20) matrix :

[H0 (  
r
k)] =

  

h(
r
k) 0

0 h(
r
k)













(5.4.3)

where [h(  
r
k)] is given by Eq.(5.3.3).
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Spin-orbit coupling : If we were to calculate the bandstructure using Eq.(5.4.3) instead

of Eq.(5.3.3) we would get exactly the same result, except that each line would have a

second one right on top of it, which we would probably not even notice if a computer

were plotting it out. But the reason we are doing this is that we want to add something

called spin-orbit coupling to Eq.(5.4.3).

The Schrodinger equation is a non-relativistic equation. For electrons traveling at

high velocities relativistic effects can become significant and we need to use the Dirac

equation. Typically in solids the velocities are not high enough to require this, but the

electric fields are very high near the nuclei of atoms leading to weak relativistic effects
that can be accounted for by adding a spin-orbit correction Hso to the Schrodinger

equation:

E H Hso
ψ
ψ

ψ
ψ

ψ
ψ









 = [ ]









 + [ ]









0 (5.4.4)

where
  

H
p m U r

p m U r
0

2

2

2 0

0 2
=

+

+













/ ( )

/ ( )

r

r (5.4.5)

and
  

H
q

m c

p p p p i p p

p p i p p p pso
x y y x y z z y z x x z

y z z y z x x z x y y x
=

− − − −

− − − − −













h

4 2 2

Ε Ε Ε Ε Ε Ε

Ε Ε Ε Ε Ε Ε

( ) ( )

( ) ( ) ( )
 

(5.4.6)

c being the velocity of light in vacuum. The spin-orbit Hamiltonian Hso is often written

as

  
H

q

m c
x pso = ( )h r r r

4 2 2
σ. Ε (5.4.7)

where the Pauli spin matrices   
r
σ  are defined as

σx =
0 1

1 0





 , σy =

0 − i

i 0





 , σz =

1 0

0 − 1






(5.4.8)

It is straightforward to show that the two expressions for the spin-orbit Hamiltonian
Hso in Eqs.(5.4.7) and (5.4.6) are identical. I will not try to justify the origin of the
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spin-orbit term for this would take us too far afield into the Dirac equation, but the

interested reader may find Problems P.2.2-P.2.5 (at the end of this Chapter) instructive.

Bandstructure with spin-orbit coupling: We already have the matrix representation for
the non spin-orbit part of the Hamiltonian, H0 (Eq.(5.4.5)). It is given by Eq.(5.3.3).

We now need to find a matrix representation for Hso and add it to H0. Let us first see

what we would do if we were to just use the s-orbitals for each atom. Usually the spin-

orbit matrix elements are significant only if both orbitals are centered on the same atom,

so that we expect a matrix of the form

sa sc sa sc

sa  a11        0  a12   0

sc   0       c11    0  c12

sa  a21        0  a22    0

sc    0       c21    0  c22

We would fill up the '11' elements of this matrix by taking the matrix elements of the 11
component of Hso (see Eq.(5.4.6) :

a11 = sa Εxpy − Εypx sa c11 = sc Εxpy − Εypx sc

To fill up the '12' elements of this matrix we take the matrix elements of the 12
component of Hso (see Eq.(5.4.6) :

a12 = sa (Εypz − Εzpy ) − i (Εzpx − Εxpz ) sa

c12 = sc (Εypz − Εzpy ) − i (Εzpx − Εxpz ) sc

Similarly we can go on with the '21' and the '22' components. As it turns out, all these

matrix elements can be shown to be zero from symmetry arguments if we assume the

potential U(r) to be spherically symmetric as is reasonable for atomic potentials. The

same is true for the s* orbitals as well. However, some of the matrix elements are non-

zero when we consider the X, Y and Z orbitals. These non-zero matrix elements can all

be expressed in terms of a single number δa  for the anionic orbitals:
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Xa Ya Za Xa Ya Za

Xa   0 - i δa   0    0    0    δa

Ya  i δa    0   0    0    0  - i δa

Za    0    0    0   - δa   i δa    0 (5.4.9a)

Xa    0    0  - δa    0   i δa    0

Ya    0    0  - i δa     - i δa    0    0

Za   δa   i δa    0    0    0    0

 and in terms of a single number δc for the cationic orbitals:

Xc Yc Zc Xc Yc Zc

Xc   0 - i δc   0    0    0    δc

Yc  i δc    0   0    0    0  - i δc

Zc    0    0    0   - δc   i δc    0 (5.4.9b)

Xc    0    0  - δc    0   i δc    0

Yc    0    0  - i δc    - i δc    0    0

Zc   δc   i δc    0    0    0    0

If we were to find the eigenvalues of either of these matrices we would obtain four

eigenvalues equal to + δc (or + δa ) and two eigenvalues equal to -2 δc (or - 2 δa ). The

splitting between these two sets of levels is 3 δc (or 3 δa ) and is referred to as the spin-

orbit splitting ∆c  (or ∆a ):

∆c  (or ∆a ) = 3 δc (or 3 δa ) (5.4.10)

The spin-orbit splitting is well-known from both theory and experiment for all the

atoms. For example, Gallium has a spin-orbit splitting of .013 eV while that for Arsenic

is 0.38 eV. It is now straightforward to write down the full matrix representation for
Hso making use of Eqs.(5.4.8) and (5.4.9), adding it to Eq.(5.3.3) and then calculating

the bandstructure. For GaAs we obtain the result shown in Fig.5.4.1a. For comparison,

in Fig5.4.1b we have shown the results obtained directly from Eq.(5.3.3) without adding

the spin-orbit part. This is basically the same plot obtained in the last Section (see

Fig.5.3.2) except that the energy scale has been expanded to highlight the top of the

valence band.
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Heavy hole, light hole and split-off bands: The nature of the valence band
wavefunction near the gamma point (kx = ky = kz = 0) play a very important role in

determining the optical properties of semiconductor nanostructures. At the gamma point,

the Hamiltonian matrix has a relatively simple form because only g0 is non-zero, while

g1, g2 and g3 are each equal to zero (see Eq.(5.2.3)). Including spin-orbit coupling the

Hamiltonian decouples into four separate blocks at the gamma point :

   Block I : Block II :
sa sc sa sc  sa

* sc
* sa

*     sc
*

sa Esa     4Ess   0   0 sa
* Es*a     0   0   0

sc    4Ess Esc   0   0 sc
*    0    Es*c    0    0

sa 0      0 Esa     4Ess sa
*    0     0   Es*a   0

sc 0      0   4Ess Esc sc
*    0     0   0     Es*c

Fig.5.5.1. (a) Bandstructure of

GaAs calculated taking spin-orbit

interaction into account. The Γ -X

direction is plotted along the

positive axis while the Γ -L direction

is plotted along the negative axis.

Fig.5.5.1. (b) Bandstructure

of GaAs calculated from Eq.

(5.2.3) without adding the

spin-orbit component.

-1 -0.5 0 0.5 1-3

-2

-1

0

1

2

3

k (as fraction of maximum value)--->

E
ne

rg
y 

(e
V

) 
--

->
 

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3

k (as fraction of maximum value)--->

E
ne

rg
y 

(e
V

) 
--

->
 



Quantum Transport: Atom to Transistor

Supriyo Datta, Purdue University

166

Block III :

Xa Ya Za Xc Yc     Zc

Xa  Epa - i δa    δa 4Exx    0       0

Ya  i δa      Epa - i δa    0 4Exx       0

Za    δa     i δa    Epa    0    0     4Exx

Xc 4Exx    0    0  Epc -i δc      δc

Yc    0 4Exx    0 i δc  Epc     -i δc

Zc    0    0 4Exx  δc i δc      Epc

Block IV :

Xa Ya Za Xc Yc     Zc

Xa   Epa  i δa    - δa 4Exx    0       0

Ya - i δa      Epa - i δa    0 4Exx       0

Za    - δa     i δa   Epa    0    0    4Exx
Xc 4Exx    0    0  Epc  i δc     - δc

Yc    0 4Exx    0 -i δc  Epc     -i δc

Zc    0    0 4Exx - δc i δc     Epc

We can partially diagonalize Blocks III and IV by transforming to the heavy hole (HH),

light hole (LH) and split-off (SO) basis using the transformation matrix

HHa LHa SOa HHc LHc SOc

Xa  1 / 2 1 / 6   1 / 3       0    0    0

Ya  i / 2 - i / 6  - i / 3      0    0    0

Za     0 2 / 3   - 1 / 3    0    0    0

[V] =
Xc    0    0    0    1 / 2 1 / 6 1 / 3

Yc    0    0    0  i / 2 - i / 6   - i / 3

Zc    0    0    0       0       2 / 3   - 1 / 3

and the usual rule for transformation, namely, [H]new = [V+] [H]old [V]. The

transformed Hamiltonian for Block III looks like
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HHa LHa SOa HHc LHc   SOc

HHa  Epa + δa    0      0 4Exx    0      0

LHa    0          Epa + δa       0    0 4Exx      0

SOa    0       0        Epa - 2 δa    0    0    4Exx

HHc 4Exx    0    0          Epc + δc    0      0

LHc    0 4Exx    0    0          Epc + δc      0

SOc    0    0 4Exx    0    0    Epc - 2 δc

Note how the three bands are neatly decoupled so that at the gamma point we can label

the energy levels as HH, LH and SO. As we move away from the gamma point, the

bands are not decoupled any more and the eigenstates are represented by superpositions

of HH, LH and SO.

Similarly Block IV can be transformed using the transformation matrix

HHa LHa SOa HHc LHc SOc

Xa  1 / 2 1 / 6   1 / 3      0    0    0

Ya - i / 2  i / 6 i / 3    0    0    0

Za     0 - 2 / 3   1 / 3    0    0    0

[ V ]  =

Xc    0    0    0    1 / 2 1 / 6 1 / 3

Yc    0    0    0  - i / 2  i / 6  i / 3

Zc    0    0    0       0       - 2 / 3    1 / 3

to obtain

HHa LHa SOa HHc LHc   SOc

HHa  Epa + δa    0      0 4Exx    0      0

LHa    0          Epa + δa       0    0 4Exx      0

SOa    0       0        Epa - 2 δa    0    0    4Exx

HHc 4Exx    0    0          Epc + δc    0      0

LHc    0 4Exx    0    0          Epc + δc      0

SOc    0    0 4Exx    0    0   Epc - 2 δc
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It is important to note that the eigenstates (which can be identified by looking at the

columns of [V] or [ V ]) are not pure upspin or pure downspin states. However, we

could view the lower block [ V ] as the spin-reversed counterpart of the upper block [V]

since it is straightforward to show that they are orthogonal, as we expect “up” and

“down” spin states to be.
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5.5. Supplementary notes: Dirac equation

Relativistic electrons are described by the Dirac equation

E

mc U cp c p ip

mc U c p ip cp

cp c p ip mc U

c p ip cp mc U

z x y

x y z

z x y

x y z

ψ
ψ
φ
φ

ψ
ψ
φ
φ



















=

+ −

+ + −

− − +

+ − − +








































2

2

2

2

0

0

0

0

( )

( )

( )

( )





which can be written compactly as

  

E
mc U I c p

c p mc U I

Ψ
Φ

Ψ
Φ









=
+( )

− +( )
























2

2

r r

r r

σ

σ

.

.

(5.5.1)

where Ψ ≡








ψ
ψ

and Φ ≡








φ
φ

Assuming U = 0 and substituting a plane wave solution of the form

  

Ψ
Φ

Ψ
Φ









 =









 ei k r

r r
.

we can show that the dispersion relation is given by

  E k m c c k( )
r

h= ± +2 4 2 2 2

which has two branches as shown.

The negative branch is viewed as being completely filled even in vacuum. The

separation between the two branches is 2m c2 which is approximately 1 MeV, well

outside the range of energies encountered in solid-state experiments. In high energy

experiments electrons are excited out of the negative branch into the positive branch

resulting in the creation of electron-positron pairs. But in common solid-state

experiments energy exchanges are less than 10 eV and the negative branch provides an

E

k

+ mc2

− mc2
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inert background. At energies  around E = mc2 , we can do a binomial expansion of

Eq.(5.5.1) to obtain the non-relativistic parabolic relation (apart from an additive

constant equal to the relativistic rest energy mc2)  :

  
E k mc k m( ) /

r
h≈ + ( )2 2 2 2

Relativistic corrections like the spin-orbit term are obtained by starting from the Dirac

equations and eliminating the component Φ using approximate procedures valid at

energies sufficiently small compared to mc2.

Non-relativistic approximation to the Dirac equation: Starting from Eq.(5.5.1) we can

show that

 
  
E mc U c p

E mc U
c pΨ Ψ Ψ{ } = +( ) { } + [ ]

+ −







 [ ] { }

−
2

2

1
1r r r r

σ σ. .

Setting E mc≈ 2on the right hand side, we obtain the lowest order non-relativistic

approximation

  
E mc U

p

m
Ψ Ψ Ψ{ } = +( ) { } + [ ] { }2

2

2

r r
σ.

(5.5.2)

which can be simplified to yield Eq.(5.4.1):

    
E mc

U p m

U p m
−( ) { } =

+

+











{ }2

2

2

2 0

0 2
Ψ Ψ

/

/

noting that

  

r r
σ.p

p

p
[ ] =













2
2

2

0

0

Effect of magnetic field: One question we will not discuss much in this book is the

effect of a magnetic field on the electron energy levels. The effect is incorporated into

the Dirac equation by replacing   
r
p with   

r r
p qA+ :
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E
mc U I c p qA

c p qA mc U I

Ψ
Φ

Ψ
Φ









=
+( ) +( )
+( ) − +( )

























2

2

r r r

r r r

σ

σ

.

.

As before (cf. Eq.(5.5.2)) we can obtain the lowest order non-relativistic approximation

  
E mc U

p qA

m
Ψ Ψ Ψ{ } = +( ) { } +

+( )[ ] { }2

2

2

r r r
σ.

which can be simplified to yield the Pauli equation:

  
E mc U p qA m I BB−( ) { } = + +( )





{ } + { }2 2
2Ψ Ψ Ψ

r r r r
/ [ ] .µ σ

where   µB q m≡ h /2 (Bohr magneton) , and     
r r r
B x A= ∇

The second term   µ σB B
r r

.  is called the Zeeman term. Note that the spin-orbit term in

Eq.(5.4.7) can be viewed as the Zeeman term due to an effective magnetic field given by

  
B x p mcSO = ( )r r

Ε /2 2

Indeed, one way to rationalize the spin-orbit term is to say that an electron in an electric

field sees this effective magnetic field due to “relativistic effects”. To obtain the spin-

orbit term directly from the Dirac equation it is necessary to go to the next higher order

[5.3].
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Exercises

E.5.1.  Set up the (2x2) matrix given in Eq.(5.1.10) for the one-dimensional dimerized

toy solid and plot the E(k) relation, cf. Fig.5.1.5.

E.5.2.  Set up the (10x10) matrix given in Eq.(5.3.3) using the parameters for GaAs
given in the text and plot the dispersion relation E(kx,ky,kz) along Γ-X  and Γ-L as

shown in Fig.5.3.2.

E.5.3. Set up the (20x20) matrix including the spin-orbit coupling as described in
Section 4.4 for GaAs and plot E vs. k along Γ-X  and Γ-L for GaAs  ( ∆ c = .013 eV

and ∆ a = .38 eV) and compare with Fig.5.4.1a, b.


