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3 / Self-consistent Field

3.1. The self-consistent field (scf) procedure

3.2. Relation to the multielectron picture

3.3. Bonding

3.4. Supplementary notes: Multielectron picture

One of the first successes of quantum theory after the Hydrogen atom was to

explain the periodic table of atoms by combining the energy levels obtained from the

Schrodinger equation with the Pauli exclusion principle requiring that each level be

occupied by no more than one electron. The energy eigenvalues of the Schrodinger

equation for each value of ‘  l ’ starting from   l  = 0 (see Eq.(1.3.8)) are numbered with

integer values of ‘n’ starting from n =   l+1. For any (n,   l ) there are (  2 1l + ) levels

with distinct angular wavefunctions (labeled with another index ‘m’) all of which have

the same energy. For each (n  lm) there a is an up-spin and a down-spin level making

the number of degenerate levels equal to 2(  2l+1) for a given (n,   l ). The energy levels

look something like this

The elements of the periodic table are arranged in order as the number of electrons

increase by one from one atom to the next, and their electronic structure can be written

as Hydrogen: 1 1s , Helium: 1 2s , Lithium: 1 22 1s s , Beryllium: 1 22 2s s , Boron: 1 22 2s s

2 1p  etc, where the superscript indicates the number of electrons occupying a particular

orbital.

  2 2 1l +( )
degenerate

levels
}

n = 1
  l  = 0

s - levels

  l  = 1

p - levels

n = 2

n = 3

  l  = 2

d - levels
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How do we calculate the energy levels for a multielectron atom? The time-

independent Schrodinger equation

  
E r H ropα α αΦ Φ( ) ( )

r r
= where

  
H

m
U rop ≡ − ∇ +h r2

2

2
( )

provides a fairly accurate description of the observed spectra of all atoms, not just the

Hydrogen atom. However, multielectron atoms involve electron-electron interactions

which is included by adding a "self-consistent field (scf)”, Uscf(  
r
r ), to the nuclear

potential Unuc(  
r
r ) : U(  

r
r ) = Unuc(  

r
r ) + Uscf (  

r
r ), just as in Section 1.4 we added an

extra potential to the Laplace potential UL (see Eq.(1.4.1b)). The nuclear potential

Unuc, like UL, is fixed, while Uscf  depends on the electronic wavefunctions and has

to be calculated from a self-consistent iterative procedure. In this chapter we will

describe this procedure and the associated conceptual issues.

3.1. The self-consistent field (SCF) procedure

Consider a Helium atom consisting of two electrons bound to a nucleus with

two positive charges '+2q'. What will the energy levels looks like?  Our first guess

would be simply to treat it just like a hydrogen atom except that the potential is

U (  
r
r ) = - 2 q2 / 4πε0r instead of U(  

r
r ) = - q2 / 4πε0r

If we solve the Schrodinger equation with U(  
r
r ) = - Zq2 / 4πε0r we will obtain energy

levels given by

En = − (Z2 / n2 ) E0 = - 54.4 eV / n2  (Z = 2)

just as predicted by the simple Bohr model (see Eq.(2.1.6)). However, this does not

compare well with experiment at all. For example, the ionization potential of Helium is

~ 23.4 eV, which means that it takes a photon with an energy of at least 23.4 eV to

ionize a Helium atom :

He + hν   ------>  He+ + e- (3.1.1a)
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This suggests that the 1s level of a Helium atom has an energy of - 23.4 eV and not -

54.4 eV as the simple argument would suggest. How could we be off by over 30 eV ?

It is because we did not account for the other electron in Helium. If we were to

measure the energy that it takes to remove the second electron from He+

He+ + hν   ------>  He++ + e-

the result (known as the second ionization potential) is indeed close to 54.4 eV. But

the (first) ionization potential is about 30 eV less indicating that it takes 30eV less

energy to pull an electron out of a neutral Helium atom than it takes to pull an electron

out of a Helium ion He+ that has already lost one electron. The reason is that an

electron in a Helium atom feels a repulsive force from the other electron, which

effectively raises its energy by 30 eV and makes it easier for it to escape.

+2q- -

n = 1

n = 2

n = 3

Free electron

In general, the ionization levels for multielectron atoms can be calculated

approximately from the Schrodinger equation by adding to the nuclear potential

Unuc(  
r
r ), a "self-consistent" field Uscf (  

r
r ) due to the other electrons (Fig.3.1.2):

U(  
r
r ) = Unuc(  

r
r ) + Uscf (  

r
r ) (3.1.2)

For Helium, the nuclear potential arises from the nuclear charge of '+Zq' located at the

origin and is given by Unuc(  
r
r ) = - Z q2 / 4πε0r. The self-consistent field arises from

the other (Z-1) electrons, since an electron does not feel any potential due to itself. In

order to calculate the potential Uscf (r) we need the electronic charge which depends

on  the wavefunctions of the electron which in turn has to be calculated from the

Fig.3.1.1.  Ionization of

a neutral Helium atom

takes approximately

23.4 eV of energy

suggesting that the n=1

level has an energy of -

23.4 eV.
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Schrodinger equation containing Uscf (r). This means that the calculation has to be

done self-consistently.

Step 1 : Guess electronic potential Uscf(  
r
r )

Step 2 : Find eigenfunctions and eigenvalues from

Schrodinger equation.

Step 3 : Calculate the electron density, n(  
r
r )

Step 4 : Calculate the electronic potential Uscf(  
r
r ).

Step 5 : If the new Uscf(  
r
r ) is significantly different from last guess,

update Uscf(  
r
r ) and go back to Step 2. If the new Uscf(  

r
r ) is

within say 10 meV of the last guess, the result has converged

and the calculation is complete.

(a) Nuclear charge         Electronic charge

r

r = 0

.

Z

rr = 0

Z-1

(b)      Unuc(r)     Uscf (r)

             

r = 0

~ Z / r

            

r = 0

.

~ (Z-1)/r

Fig.3.1.2. Sketch of the (a) nuclear charge density and the electronic

charge density, (b) potential energy felt by an additional electron due t o

the nucleus, Unuc (r), and the other electrons, Uscf  (r). The latter has to b e

calculated self-consistently.
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For Step 2 we can use essentially the same method as we used for the hydrogen atom,

although an analytical solution is usually not possible. The potential Uscf(  
r
r ) is in

general not isotropic (which means independent of θ φ, ) but for atoms it can be

assumed to be isotropic without incurring any significant error. However, the

dependence on 'r' is quite complicated so that no analytical solution is possible.

Numerically, however, it is just as easy to solve the Schrodinger equation with any

U(r) as it is to solve the hydrogen atom problem with U(r) ~ 1/r.

For Step 3 we have to sum up the probability distributions for all the occupied

eigenstates :

  

n r r
occ

( ) ( )
r r

= ∑ Φα
α

2
= ( )∑ f r

r
Yn

occ n l m
lm

( )
,

. , ,

2
2θ φ (3.1.3)

If we assume the charge distribution to be isotropic (independent of θ,φ ), we can write

  

σ θ θ φ( ) sin ( )
, ,

r r d d n r f r
occ n l m

n≡ ( ) =∫ ∑2 2r
(3.1.4)

For Step 4  we can use straightforward electrostatics to show that

U r
Z

Z
q

r
dr r

q
dr

r
rscf

r

r

( ) ' ( ') '
( ')
'

= − +










∫ ∫

∞1
4 4

2

0 0

2

0πε
σ

πε
σ

(3.1.5)

The two terms in Eq.(3.1.5) arise from the contributions due to the charge within a

sphere of radius ‘r’ and that due to the charge outside of this sphere as shown below.

First term in Second term in

Eq. (3 .1 .5 ) Eq . (3 .1 .5 )

∞r + r
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The first term is the potential at ‘r’ outside a sphere of charge which can be shown to

be the same as if the entire charge were concentrated at the center of the sphere:

q
r

dr r
r2

0 0
4πε

σ' ( ')∫

The second term is the potential at ‘r’ inside a sphere of charge and can be shown to

be the same as the potential at the center of the sphere (the potential is the same at all

points inside the sphere since the electric field is zero)

q
dr

r
r

r

2

04πε
σ

'
( ')
'

∞
∫

Adding the two components we obtain the total potential.

To understand the reason for the factor (Z-1)/Z in Eq.(3.1.4), we note that the

appropriate charge density for each eigenstate should exclude the eigenstate under

consideration, since no electron feels any repulsion due to itself. For example, Silicon

has 14 electrons 1s2 2s2 2p6 3s2 3p2 and the self-consistent field includes all but one

of these electrons - for the 3p level we exclude the 3p electron, for the 3s level we

exclude the 3s electron etc. However, it is more convenient to simply take the total

charge density and scale it by the factor (Z-1)/Z. This preserves the spherical

symmetry of the charge distribution and the difference is usually not significant. Note

that the total electronic charge is equal to Z:

dr r Z
occ n l m

σ( )
. , ,0

1
∞
∫ ∑= = (3.1.6)

since the radial eigenfunctions are normalized : dr f rn
0

2 1
∞
∫ =( ) .

Helium atom: Fig.3.1.3 shows the potential profile and the probability distribution

for the 1s state of Helium obtained using the self-consistent field method we have

just described. Also shown for comparison is the 1s level of the Hydrogen atom,

discussed in the last chapter.
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Silicon atom: Fig.3.1.4 shows the probability distribution for the 1s and 3p states of

Silicon obtained using the self-consistent field method. Also shown for comparison

isthe 1s level of the Hydrogen atom. Note that the Silicon 1s state is very tightly

confined relative to the 3p state or the Hydrogen 1s state. This is typical of core states

and explains why such states remain well- localized in solids, while the outer electrons

(like 3p) get delocalized.

Fig.3.1.3. Self-consistent field

method applied to the Helium

atom. (a) Nuclear potential,

UN(r) and the self-consistent

electronic potential Uscf(r).

(b) Radial probability

distribution for the 1s state

in Helium and Hydrogen.
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3.2. Relation to the multielectron picture

Multielectron Schrodinger equation: It is important to recognize that the self-

consistent field method is really an approximation that is widely used only because the

correct method is virtually impossible to implement. For example, if we wish to

calculate the eigenstates of a Helium atom with two electrons we need to solve a two-

electron Schrodinger Equation of the form

  

E r r
m

U r U r U r r r reeΨ Ψ( , ) ( ) ( ) ( , ) ( , )
r r h r r r r r r
1 2

2
2

1 2 1 2 1 22
= − ∇ + + +







  (3.2.1)

where   
r
r 1 and   

r
r 2 are the coordinates of the two electrons and Uee is the potential

energy due to their mutual repulsion :   U r r e r ree( , ) /
r r r r
1 2

2
0 1 24= −πε . This is more

difficult than it is to solve the "one-electron" Schrodinger equation that we have been

talking about, but it is not impossible. However, this approach quickly gets out of

hand as we go bigger atoms with many electrons and so is seldom implemented

directly. But suppose we could actually calculate the energy levels of multielectron

atoms. How would we use our results (in principle, if not in practice) to construct a

one-electron energy level diagram like the ones we have been drawing? The answer

depends on what we want our one-electron energy levels to tell us.

Fig.3.1.4. Self-consistent field

method applied to the Silicon

atom. Radial probability

distribution for Hydrogen

1s level, Silicon 1s

level and 3p level.
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Ionization levels and affinity levels: Our interest is primarily in describing the flow

of current, which involves inserting an electron and then taking it out or vice versa, as

we discussed in our introductory Chapter. So we would want the one-electron energy

levels to represent either the energies needed to take an electron out of the atom

(ionization levels) or the energies involved in inserting an electron into the atom

(affinity levels).

Fig.1.3.1. One-electron energy levels represent energy differences

between the energy levels of the N-electron atom and the (N-1) or t h e

(N+1) electron atom. The former, called the ionization levels, are the filled

states from which an electron can be removed, while the latter, called t h e

affinity levels, are the empty states to which an electron can be added.

For the ionization levels, the one electron energies εn represent the difference between

the ground state energy E NG ( ) of the neutral N-electron atom and the nth energy

level, E Nn( )−1  positively ionized (N-1)-electron atom:

εn G nE N E N= − −( ) ( )1 (3.2.2a)

These ionization energy levels are measured by looking at the photon energy needed

to ionize an electron in a particular level. Such photoemission experiments are very

useful for probing the occupied energy levels of atoms, molecules and solids.

However, they only provide information about the occupied levels, like the 1s level of a

Helium atom or the valence band of a semiconductor. To probe the unoccupied levels

Ionization

Lowest energy

level of N

electron atom

Energy  levels of

N+1 electron atom

Energy  levels of

N-1 electron atom

E NG ( )

E Nn( )−1 E Nn( )+1

Affinity
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like the 2s level of a Helium atom or the conduction band of a semiconductor we need

an inverse photoemission experiment like (see Fig.3.2.2)

He + e-    ------>  He- + hν

which measure the affinity of the atom for acquiring additional electrons. To calculate

the affinity levels we should look at the difference between the ground state energy

E NG ( ) and the nth energy level, E Nn( )+1  negatively ionized (N+1)-electron atom:

εn n GE N E N= + −( ) ( )1 (3.2.2b)

Note that if we want the energy levels to correspond to optical transitions then we

should look at the difference between the ground state energy E NG ( ) and the nth

energy level, E Nn( )  of the N-electron atom, since visible light does not change the

total number of electrons in the atom, just excites them to a higher energy.

εn n GE N E N= −( ) ( )

There is no a priori reason why the energy gap obtained from this calculation should

correspond to the energy gap obtained from either the ionization or the affinity levels.

In large solids (without significant excitonic effects) we are accustomed to assuming

that the optical gap is equal to the gap between the valence and conduction bands, but

this need not be true for small nanostructures.

Single-electron charging energy: As we have explained above, the straightforward

approach for calculating the energy levels would be to calculate the energies E NG ( )

and E Nn( )±1  from an N-electron and an (N±1) electron Schrodinger equation (cf.

Eq.(3.2.1) which is a two-electron Schrodinger equation) respectively. This, however,

is usually impossible and the only practical approach for large atoms, molecules or

solids is to include an effective potential Uscf(  
r
r ) in the Schrodinger Equation as we

have been discussing.

How do we choose this effective potential? If we use U Nee( )  to denote the

total electron-electron interaction energy of an N-electron system then the appropriate

Uscf for the ionization levels is equal to the change in the interaction energy as we go

from an N-electron to an (N-1)-electron atom:
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U U N U Nscf ionization ee ee[ ] = − −( ) ( )1 (3.2.3a)

Similarly the appropriate Uscf for the affinity levels is equal to the change in the

interaction energy between an N-electron and an (N+1)-electron atom:

U U N U Nscf affinity ee ee[ ] = + −( ) ( )1 (3.2.3b)

We could write the interaction energy approximately as the electrostatic energy stored

in a capacitor U N q N Cee E( ) /→ 2 2 2 , corrected to account for the fact that an

electron does not interact with itself:

U N
q
C

N Nee
E

( ) ( )= −
2

2
1 (3.2.4)

From Eqs.(3.2.3a,b) and (3.2.4) it is easy to see that

U
q
C

Nscf ionization
E

[ ] = −( )
2

1   while    U
q
C

Nscf affinity
E

[ ] =
2

(3.2.5)

Ionization
  Levels

EA

Vacuum
   level

IP

Affinity
Levels

Fig.3.2.2. The

ionization levels

include the repulsive

potential from Z-1

electrons while the

affinity levels include

that of Z electrons, so

that the latter is

higher in energy by

the single-electron

charging energy U0.
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This means that to calculate the ionization levels of a Z-electron atom, we should use

the potential due to (Z-1) electrons (one electron for Helium) as we did in the last

section. But to calculate the affinity levels we should use the potential due to Z

electrons (two electrons for Helium). The energy levels we obtain from the first

calculation are lower in energy than those obtained from the second calculation by the

single-electron charging energy U q CE0
2= /  (see Eq.(3.4.2)) such that

Affinity levels = Ionization Levels + U0 (3.2.6)

As we discussed in Section I.5, the single-electron charging energy U0 depends on

the degree of localization of the electronic wavefunction and can be several eV in

atoms. Even in nanostructures that are say 10 nm or less in dimension, it can be quite

significant (that is, comparable to kBT).

One important consequence of this is that even if a structure has energy levels

that are very closely spaced compared to k TB ,

it may not conduct well, because the one-electron charging effects will create a

“Coulomb gap” between the occupied and unoccupied levels:

Of course, this is a significant effect only if the single-electron charging energy U0 is

larger than k TB .

µ

U0µ

Affinity Levels

Ionization Levels
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Hartree approximation: In large conductors (large R) U0is negligible and the

distinction between Z and (Z-1) can be ignored. The self-consistent potential for both

ionization and affinity levels is essentially the same and can be written as (cf.

Eqs.(3.2.3a) and (3.2.3b)) U U Nscf ee= ∂ ∂/  which can be generalized to obtain the

standard expression used in density functional theory (DFT):

  
U r

U
n rscf

ee( )
( )

r
r=

[ ]
∂

∂
(3.2.8)

which tells us that the self-consistent potential at any point   
r
r  is equal to the change in

the electron-electron interaction energy due to an infinitesimal change in the number

of electrons at the same point. If we use the standard expression for Uee from

classical electrostatics

  
U dr dr

q n r n r

r ree =
−∫∫

1

2 4

2r r
r r

r r'
( ) ( ' )

'πε (3.2.9)

Eq.(3.2.8) yields the Hartree approximation,   U rH( )
r

 for the self-consistent potential :

  
U r dr

q n r
r rH( ) '
( ')

'

r r
r

r r=
−∫

2

4πε (3.2.10)

which is a solution of the Poisson equation − ∇ =2 2U q nH /ε in a homogeneous

medium. Device problems often require us to incorporate complicated boundary

conditions including different materials with different dielectric constants. It is then

more convenient to solve a modified form of the Poisson equation that allows a

spatially varying relative permittivity:

  − ∇ =∇
r

.( ) /ε εr HU q n2
0 (3.2.11)

But for atoms, there is no complicated inhomogeneity to account for and it is more

convenient to work with Eq.(3.2.10).
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Correlation energy: The actual interaction energy is less than what Eq.(3.2.9)

predicts because electrons can correlate their motion so as to avoid each other - this

correlation would be included in a many-electron picture but is missed in the one-

particle picture. One way to include it is to write

  
U dr dr

e n r n r g r r

r ree = −
−∫∫

1

2

1

4

2r r
r r r r

r r'
( ) ( ' ) [ ( , ' )]

'πε

where g is a correlation function that accounts for the fact that the probability of

finding two electrons simultaneously at   
r
r  and   

r
r ' is not just proportional to n(  

r
r ) n(  

r
r ')

but is somewhat reduced because electrons try to avoid each other (actually this

correlation factor is spin-dependent, but we are ignoring such details). The

corresponding self-consistent potential is also reduced (cf.Eq.(3.2.10)):

  
U dr

e n r g r r

r rscf = −
−∫

r
r r r

r r'
( ' ) [ ( , ' )]

'

2 1

4πε
(3.2.12)

 A lot of research has gone into estimating the function g(  
r
r,

r
r' ) (generally referred to

as the exchange-correlation "hole").

 The basic effect of the correlation energy is to add a negative term Uxc(  
r
r ) to

the Hartree term UH(  
r
r ) discussed above (cf. Eq.(3.2.10)) :

Uscf(  
r
r ) = UH(  

r
r ) + Uxc(  

r
r ) (3.2.13)

One simple approximation, called the local density approximation (LDA) expresses

Uxc at a point in terms of the electron density at that point:

 
  
U r

q
C n rxc( ) ( ) /r r

= − [ ]
2

0

1 3

4πε
(3.2.14)

Here, C is a constant of order 1. The physical basis for this approximation is that an

individual electron introduced into a medium with a background electron density n(r)

will push other electrons in its neighborhood creating a positive correlation “hole”

around it. If we model this hole as a positive sphere of radius r0 then we can estimate
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r0 by requiring that the total charge within the sphere be equal in magnitude to that of

an electron:

n r r r
C

n r( ) / ( ) /4 3 1
1

0
3

0
1 3π = → = [ ]−

C being a constant of order 1. The potential in Eq.(3.2.14) can be viewed as the

potential at the center of this positive charge contained in a sphere of radius r0:

  
U r

q
rxc( )

r
= −

2

0 04πε

Much work has gone into the self-consistent field theory and many sophisticated

versions of Eq.(3.2.14) have been developed over the years. But it is really quite

surprising that the one-electron picture with a suitable self-consistent field often

provides a reasonably accurate description of multielectron systems. The fact that it

works so well is not something that can be proved mathematically in any convincing

way. Our confidence in the self-consistent field method stems from the excellent

agreement that has been obtained with experiment for virtually every atom in the

periodic table (see Fig.3.2.3). Almost all the work on the theory of electronic structure

of atoms, molecules and solids is based on this method and that is what we will be

using.
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Fig.3.3.3. Energy levels as a function of the atomic number calculated

theoretically using a self-consistent field method. The results are in

excellent agreement with experiment (adapted from F. Herman and S .

Skillman, "Atomic Structure Calculations", p.3-9, Prentice-Hall (1963)). For

a hydrogen atom, the 's' and 'p' levels are degenerate (that is, they have

the same energy). This is a consequence of the ~ 1 / r dependence of t h e

nuclear potential. But this is not true of the self-consistent potential d u e

to the electrons and for multi-electron atoms, the 's' state has a lower

energy than the 'p' state.
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3.3. Bonding

One of the first successes of quantum theory was to explain the structure of

the periodic table of atoms by combining the energy levels obtained from the

Schrodinger equation with the Pauli exclusion principle requiring that each level be

occupied by no more than one electron. In Section 3.3.1 we will discuss the general

trends, especially the periodic character of the energy levels of individual atoms. Based

on this understan We will then discuss two mechanisms (ionic and covalent) whereby

a pair of atoms, A and B, can lower their overall energy by bonding to form a molecule

AB (Sections 3.3.2, 3.3.3): B : E(AB) < E(A) + E(B).

3.3.1. Valence electrons

Fig.3.3.1. Energy of the outermost s- (x) and p-levels (o) of the first 86

elements of the periodic table excluding the d- and f-shell transition metals

(N = 21-28, 39-46 and 57-78). The numbers are taken from the Solid State

Table of the Elements in W.A. Harrison, Electronic Structure and the

Properties of Solids, Dover Publications (1989).

It is important to note that only the electrons in the outermost shell, referred to

as the valence electrons, participate in the bonding process. The energies of these

valence electron exhibit a periodic variation as shown in Fig.3.3.1 for the first eighty-

six atoms of the periodic table from Hydrogen (atomic number, N = 1) to Radon

0 20 40 60 80 100
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

 Atomic Number --->

 E
ne

rg
y 

(e
V

) -
--

> 



                                   Quantum Transport: Atom to Transistor
                                                                                                                                          

                                                                Supriyo Datta, Purdue University

92

(N=86), excluding the d- and f-shell transition metals (see Table 2.1). The main point

to notice is that the energies tend to go down as we go across a row of the periodic

table from Lithium (Li) to Neon (Ne), increases abruptly as we step into the next row

with Sodium (Na) and then decreases as we go down the row to Argon (Ar). This

trend is shown by both the 's' and 'p' levels and continues onto the higher rows. Indeed

this periodic variation in the energy levels is at the heart of the periodic table of the

elements.

Table 3.3.1. First eighty-six atoms of the periodic table from Hydrogen

(atomic number, N = 1) to Radon (N=86), excluding the d- and f-shell

transition metals (N = 21-28, 39-46 and 57-78).

   H   He

(N=1) (N=2)

  Li   Be   B   C   N   O  F           Ne

(N=3) (N=4) (N=5) (N=6) (N=7) (N=8) (N=9) (N=10)

   Na   Mg Al   Si   P   S  Cl          Ar

(N=11) (N=12)           (N=13) (N=14) (N=15) (N=16) (N=17)    (N=18)

   K   Ca . . . . . .  Cu  Zn       Ga Ge      As       Se       Br       Kr

(N=19) (N=20) ....... (N=29)  (N=30)  (N=31)  (N=32)  (N=33) (N=34) (N=35)(N=36)

   Rb   Sr . . . . . .   Ag   Zn   In   Sn  Sb    Te        I         Xe

(N=37) (N=38) ....... (N=47) (N=48) (N=49) (N=50) (N=51) (N=52) (N=53) (N=54)

   Cs   Ba . . . . . .   Au  Hg          Tl         Pb    B       Po       At         Rn

(N=55) (N=56) .......  (N=79) (N=80)  (N=81)  (N=82) (N=83) (N=84)  (N=85)  (N=86)
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3.3.2. Ionic bonds

      

Na Cl

3s

3s

3p
-5.1

-24.6

-12.3

.   

Na Cl

3s

3s

3p
-5.1

-24.6

-12.3

+ -

Fig.3.3.2. Formation of Na+Cl- from individual Na and Cl atoms with a '3s'

electron from Na "spilling over" into the '3p' levels of Cl thereby lowering

the overall energy. This is only part of the story, since the overall

energetics also includes the electrostatic energy stored in the

microscopic capacitor formed by the two ions as explained in the text.

Ionic bonds are typically formed between an atom to the left of the periodic

table (like Sodium, Na) and one on the right of the periodic table (like Chlorine, Cl).

The energy levels of Na and Cl look roughly as shown in Fig.3.3.2. It seems natural

for the '3s' electron from Na to "spill over" into the '3p' levels of Cl thereby lowering

the overall energy as shown. Indeed it seems “obvious” that the binding energy,

Ebin of NaCl would be

Ebin = E(Na) + E(Cl) - E(Na Cl+ − ) = 12.3 - 5.1 = 7.2 eV.

But this argument is incomplete because we also need to consider the change in the

electrostatic energy due to the bonding. The correct binding energy is more like 4 eV,

The point is that the energy levels we have drawn here are all ionization

levels. The energy needed to create a sodium ion is given by its ionization potential

E (Na+) – E(Na) = IP (Na) = 5.1 eV (3.3.1a)
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But the energy needed to create a Chlorine ion is given by the electron affinity of Cl

and this includes an extra charging energy U0:

E(Cl) - E (Cl−) = EA(Cl) =  IP(Cl) - U0 = 12.3 eV - U0 (3.3.1b)

Combining Eqs.(3.3.1a) and (3.3.1b) we obtain

E Na E Cl E Na E Cl( ) ( ) ( ) ( )+ − −+ − =    7.2 eV - U0 (3.3.2)

However, this is not the binding energy of NaCl. It gives us the energy gained in

converting neutral Na and neutral Cl into an Na+ and a Cl−  ion completely separated

from each other. If we let an Na+ and a Cl−  ion that are infinitely far apart come

together to form a sodium chloride molecule, Na Cl+ − , it will gain an energy U0' in

the process.

E Na E Cl E Na Cl U( ) ( ) ( ) '+ − + −+ − = 0

so that the binding energy is given by

E E Na E Cl E Na Cl eV U Ubin = + − = − ++ −( ) ( ) ( ) . '7 2 0 0 (3.3.3)

U U0 0− '  is approximately 3 eV, giving a binding energy of approximately 4.2 eV.

The details of this specific problem are not particularly important – the main point I

wish to make is that although the process of bonding by electron transfer may seem

like a simple one where one electron “drops” off an atom into another with a lower

energy level, the detailed energetics of the process require a more careful discussion.

In general, care is needed when using one-electron energy level diagrams to discuss

electron transfer on an atomic scale.

3.3.3. Covalent bonds

We have just seen how a lowering of energy comes about when we bring

together an atom from the left of the periodic table (like Sodium) and one from the
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right (like Chlorine). The atoms on the right of the periodic table have lower

electronic energy levels and are said to be more electronegative than those on the left.

We would expect electrons to transfer from the higher energy levels in the former to

the lower energy levels in the latter to form an ionic bond.

However, this argument does not explain covalent bonds which involve atoms

with roughly the same electronegativity. The process is a little more subtle. For

example, it is hard to see why two identical 'H' atoms would want to form a H2

molecule, since no lowering of energy is achieved by transferring an electron from one

atom to the other. What happens is that when the two atoms come close together the

resulting energy levels split into a bonding level (EB) and an anti-bonding level ( EA)

as shown in Fig.3.3.3. Both electrons occupy the bonding level which has an energy

lower than that of an isolated hydrogen atom : EB <  E0

H H

1s 1s
E 0

E  = -13.6 eV0

H H

E

E

B

A

E 0

                        

How do we calculate EB ? By solving the Schrodinger equation :

  

E r
m

U r U r U r rN N scfα α αΦ Φ( ) ( ) ( ) ( ) ( )'
r h r r r r

= − ∇ + + +






2

2

2
(3.3.4)

where UN(r) and UN '(r) are the potentials due to the left and the right nuclei

respectively and Uscf (r) is the potential that one electron feels due to the other. To

keep things simple let us ignore Uscf  (r) and calculate the electronic energy levels due

to the nuclear potentials alone :

Fig.3.3.3. Formation of H2 from individual H atoms with a bonding

level, EB and an anti-bonding level, EA.
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E r
m

U r U r rN Nα α α0 0

2
2

02
Φ Φ( ) ( ) ( ) ( )'

r h r r r
= − ∇ + +







(3.3.5)

In Chapter 3 we will show that the lowest energy solution to Eq.(3.3.5) can be written

approximately as

E E
a b

sB0 0 1
= + +

+
(3.3.6)

where a =  - 2
1 1

0

2
E

R e
R

R− + −( )  ,  b =  - 2 10E R e R( )+ −

and s  = e R RR− + +( ( / ))1 32  , R R a≡ / 0

R being the center-to-center distance between the hydrogen atoms 

Let us now try to understand the competing forces that lead to covalent

bonding. The dashed line in Fig.3.3.4 shows EB0 - E0 versus the bond length, R, as

given by Eq.(3.3.6). Experimentally, the bond length R for a H2 molecule is .074 nm,

indicating that the overall energy is a minimum for this value of R. Since the energy

keeps decreasing as R is decreased, one might wonder why the two hydrogen atoms

do not just sit on top of each other (R = 0). To answer this question we need to

calculate the overall energy which should include the electron-electron repulsion (note

that Uscf(r) was left out from Eq.(3.3.6)) as well as the nucleus-nucleus repulsion. To

understand the overall energetics let us consider the difference in energy between a

hydrogen molecule, H2 and two isolated hydrogen atoms (2H).

The energy required to assemble two separate hydrogen atoms from two

protons (N, N') and two electrons (e,e') can be written as

E(2H) = Ue N,   +  Ue N', '  = 2 E0 (3.3.7a)

The energy required to assemble an H2 molecule from two protons (N, N') and two

electrons (e,e') can be written as

E(H2) = UN N, ' + Ue e, ' + Ue N,  + Ue N, ' + Ue N',  + Ue N', ' (3.3.7b)
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Eq.(3.3.6) gives the quantum mechanical value of ( Ue N,  + Ue N, ' ) as well as ( Ue N',

+ Ue N', ') as EB0. Hence

E(H2) = UN N, ' + Ue e, ' + 2 EB0 (3.3.7c)

The binding energy is the energy it takes to make the hydrogen molecule dissociate

into two hydrogen atoms and can be written as

Ebin   = E(H2) - E(2H) = 2 (EB0 - E0 ) + UN N, ' + Ue e, ' (3.3.8)

This is the quantity that ought to be a minimum at equilibrium and it consists of three

separate terms. Eq.(3.3.6) gives us only the first term. The second term is easily

written down since it is the electrostatic energy between the two nuclei which are point

charges :

U q RN N, ' /= 2
04πε (3.3.9a)

The electrostatic interaction between the two electrons should also look like q2 / 4πε0R

for large R, but should saturate to ~ q2 / 4πε0a0  at short distances since the electronic

charges are diffused over distances ~a0. Let us approximate it as

U q R ae e, ' /≅ +2
0

2
0

24πε (3.3.9b)

noting that this is just an oversimplified approximation to what is in general a very

difficult quantum mechanical problem - indeed, electron-electron interactions represent

the central outstanding problem in the quantum theory of matter.

The solid line in Fig.3.3.4 shows UN N, ' (Eq.(3.3.9a)), while the x's show

Ue e, ' (Eq.(3.3.9b)). The +’s shows the total binding energy estimated from

Eq.(3.3.8). It has a minimum around 0.1 nm which is not too far from the

experimental bond length of 0.074 nm. Also the binding energy at this minimum is ~

4.5 eV, very close to the actual experimental value. Despite the crudeness of the

approximations used, the basic physics of bonding is illustrated fairly well by this

example.
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Fig.3.3.4. Various energies as a function of the nuclear distance R

xxxx Approximate electron-electron repulsive energy (Ue,e')

Solid line  Approximate nucleus-nucleus repulsive energy (UN,N')

Dashed line, (EB0-E0) : Energy of the bonding level in a H2 molecule

relative to the '1s' level in a hydrogen atom calculated approximately from

the Schrodinger equation without any self-consistent potential.

++++, Binding energy of a H2 molecule relative to two hydrogen atoms

estimated from 2(EB0-E0) + UN,N' + Ue,e'.
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Vibrational frequency: The shape of the binding energy vs. R curve suggests that we

can visualize a hydrogen molecule as two masses connected by a spring.

H H

An ideal spring with a spring constant K has a potential energy of the form U(R) =

K(R - R0)2 /2. The binding energy of the hydrogen molecule (see Fig.3.3.4) can be

approximated as U(R) ≅  U(R0) + K(R - R0)2 /2, where the effective spring constant

K is estimated from the curvature d U dR
R R

2 2

0
/[ ] =

. Indeed the vibrational frequency

of the H-H bond can be estimated well from the resonant frequency 2K M/  of the

mass and spring system where M is the mass of a hydrogen atom.

Ionization Levels :  As we have discussed, the energy levels of a multielectron system

usually denote the ionization levels, that is the energy it takes to strip an electron from

the system. This means that in the present context the energy level EB for a hydrogen

molecule should represent

EB  = E(H2)  -   E(H2
+)

Since E(H2
+) = UN N, ' + Ue N',  + Ue N', ' , we can write using Eq.(3.3.9b),

EB  = Ue e, ' + Ue N,  + Ue N, ' = Ue e, ' + EB0 (3.3.10)

It is easy to check that for our model calculation (see Fig.3.3.4) EB0 is nearly 15 eV

below E0, but EB lies only about 4 eV below E0. If we were to include a self-

consistent field Uscf(r) in the Schrodinger equation, we would obtain the energy EB

which would be higher (less negative) than the non-interacting value of EB0 by the

electron-electron interaction energy Ue e, '.

Fig.3.3.5. A Hydrogen molecule

can be viewed as two masses

connected by a spring.
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Binding energy: It is tempting to think that the binding energy is given by

Ebin  = 2 (EB - E0 ) + UN N, '

since EB includes the electron-electron interaction energy Ue e, '. However, it is easy to

see from Eqs.(3.3.8) and (3.3.10) that the correct expression is

Ebin  = 2 (EB - E0 ) + (UN N, ' - Ue e, ')

The point I am trying to make is that if we include the electron-electron interaction in

our calculation of the energy level EB then the overall energy of two electrons is NOT

2EB, for that would double-count the interaction energy between the two electrons.

The correct energy is obtained by subtracting off this double-counted part:  2EB -

Ue e, '.
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3.4. Supplementary topic: Multielectron picture

As I mentioned in Section 3.2., the self-consistent field (SCF) method is

widely used because the exact method based on a multielectron picture is usually

impossible to implement. However, it is possible to solve the multielectron problem

exactly if we are dealing with a small channel weakly coupled to its surroundings,

like the one-level system discussed in the Prologue (see Section P.4). It is

instructive to re-do this one-level problem in the multielectron picture and compare

with the results obtained from the SCF method.

One-electron vs. multielectron energy levels: If we have one spin degenerate level

with energy ε , the one-electron and multielectron energy levels would look as

shown in Fig.3.4.1.Since each one-electron energy level can either be empty (’0’) or

occupied (‘1’), multielectron states can be labeled in the form of binary numbers

with a number of digits equal to the number of one-particle states. ‘N’ one-electron

states thus give rise to 2N multielectron states, which quickly diverges as N

increases, making a direct treatment impractical. That is why SCF methods are so

widely used, even though they are only approximate.

Fig.3.4.1. One-electron vs. multielectron energy levels in a channel with

one spin degenerate level having energy ε .

For a small system with two one-electron states, there are only four

multielectron states: 00, 01, 10 and 11 with energies 0, ε, ε  and 2 0ε + U

respectively where U0 is the electron-electron interaction energy associated with the

two-electron system. The other states have either zero or one electron and hence do
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not involve any interaction energy. In the one-electron picture each state has an

average occupation somewhere between 0 and 1.

Master equation: In the multielectron picture, the overall system has different

probabilities Pα of being in one of the 2N possible states α  and all the probabilities

must add up to one:

α
α∑ = →P 1 P P P P00 01 10 11 1+ + + = (3.4.1)

We can calculate the individual probabilities by noting that the system is continually

shuffled among these states and under steady state conditions there must be no net

flow into or out of any state.

R P R Pα β β αα
β β

β→( ) = →( )∑ ∑ (3.4.2)

Knowing the rate constants, we can calculate the probabilities by solving Eq.(3.4.2).

Equations involving probabilities of different states are called master equations. We

could call Eq.(3.4.2) a multielectron master equation.

The rate constants R( α β→ ) can be written down assuming a specific

model for the interaction with the surroundings. For example, if we assume that the

interaction only involves the entry and exit of individual electrons from the source

and drain contacts then for the ‘00’ and ‘01’ states the rate constants are given by

where f f1 0 1
' ( )≡ −ε µ and f f2 0 2

' ( )≡ −ε µ (3.4.3a)

tell us the availability of electrons with energy ε in the source and drain contacts

respectively. The entry rate is proportional to the available electrons, while the exit

rate is proportional to the available empty states. The same picture applies to the

ε

0
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00
  

γ γ1
1

2
2

h h
f f' '+   

γ γ1
1

2
21 1

h h
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flow between the ‘00’ and the ‘10’ states, assuming that up- and down-spin states

are described by the same Fermi function in the contacts, as we would expect if each

contact is locally in equilibrium.

Similarly we can write the rate constants for the flow between the ‘01’ and

the ‘11’ states

where f f U1 0 0 1
'' ( )≡ + −ε µ   and  f f U2 0 0 2

'' ( )≡ + −ε µ (3.4.3b)

tell us the availability of electrons with energy  (ε + U0) corresponding to the energy

difference between the 01 and 11 states. This is larger than the energy difference ε
between the 00 and 01 states because it takes more energy to add an electron when

one electron is already present due to the interaction energy 2U0.

Using these rate constants it is straightforward to show from Eq.(3.4.2) that

P
P

P
P

f f

f f
10

00

01

00

1 1 2 2

1 1 2 21 1
= = +

−( ) + −( )
γ γ

γ γ

' '

' '
(3.4.4a)

and
P
P

P
P

f f

f f
11

10

11

01

1 1 2 2

1 1 2 21 1
= = +

−( ) + −( )
γ γ

γ γ

'' ''

'' ''
(3.4.4b)

Together with Eq.(3.4.1), this gives us all the individual probabilities. Fig.3.4.2

shows the evolution of these probabilities as the gate voltage VG  is increased

holding the drain voltage VD equal to zero. The gate voltage shifts the one-electron

level ε ε→ + UL  (we have assumed U qVL G= − ) and the probabilities are

calculated from Eqs.(3.4.4) and (3.4.1). The system starts out in the ‘00’ state

( P00=1), shifts to the ‘01’ and ‘10’ states (P01= P10=0.5) once ε + UL drops below

µ, and finally goes into the ‘11’ state ( P11=1) when ε + +U UL 2 0 drops below µ.

ε
01

  

γ γ1
1

2
2

h h
f f'' ''+
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2
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h h
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Relation between the multielectron picture and the one-electron levels: As I have

emphasized in Section 2.2, one-electron energy levels represent differences between

energy levels in the multielectron picture corresponding to states that differ by one

electron. Transitions involving the addition of one electron are called affinity levels

while those corresponding to the removal of one electron are called ionization

Gate, VG

µµ
DrainSource

ε + UL

Fig.3.4.2. Evolution of the

energy levels of a channel with

one spin-degenerate level as

the gate voltage VG  is made

more positive, holding the drain

voltage VD  equal to zero.
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levels. For example (see Fig.3.4.2), if the system is in the ‘00’ state then there are

two degenerate one-electron levels ε + UL representing

ε + UL = E (10) – E (00)  = E(01) – E (00) Affinity levels

Once it is in the ‘10’ state there are two one-electron levels

ε + UL =  E (10) – E (00) Ionization level

and ε + +U UL 0 = E (11) – E (10) Affinity level

In the ‘11’ state there are two degenerate one-electron levels

ε + +U UL 0 = E (11) – E (10)   = E (11) – E (01)   Ionization levels

Affinity levels lie above µ, while ionization levels lie below µ as shown in Fig.3.4.2.

This is a very important general concept regarding the interpretation of the one-

electron energy levels when dealing with complicated interacting objects. The

occupied (or ionization) levels tell us the energy levels for removing an electron

while the unoccupied (or affinity) levels tell us the energy levels for adding an extra

electron. Indeed that is exactly how these levels are measured experimentally, the

occupied levels by photoemission and the unoccupied levels by inverse

photoemission as mentioned in Section 1.1.

Law of equilibrium: Fig.3.4.2 represents an equilibrium calculation with both

source and drain contacts having the same Fermi function: f1 = f2. Equilibrium

problems do not really require the use of a master equation like Eq.(3.4.2). We can

use the general principle of equilibrium statistical mechanics which states that the

probability Pα that the system is in a multielectron  state α  with energy Eα  and Nα
electrons is given by

P
Z

E N k TBα α αµ= − −( )1
exp ( ) /

(3.4.5)
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where the constant Z (called the partition function) is determined so as to ensure that

the probabilities of all the states add up to one (Eq.(3.4.5)):

Z E N k TB= − −( )∑
α

α αµexp ( ) / (3.4.6)

This is the central law of equilibrium statistical mechanics that is applicable to any

system of particles (electrons, photons, atoms etc), interacting or otherwise [3.4].

The Fermi function is just a special case of this general relation that can be obtained

by applying it to a system with just a single one-electron energy level, corresponding

to two multielectron states:

α Nα Eα Pα
0 0 0 1 / Z

1 1 ε (1 / Z)  exp [( ) / ]µ ε− k TB

so that Z k TB= + −1 exp [( ) / ]µ ε  and it is straightforward to show that the

average number of electrons is equal to the Fermi function (Eq.(1.1.1)):

N N P P
k T

k T
fB

B
= = = −

+ −
= −[ ]∑ α α

α

µ ε
µ ε

ε µ1 01
exp [( ) / ]

exp [( ) / ]

For multielectron systems, we can use the Fermi function only if the electrons are

not interacting. It is then justifiable to single out one level and treat it independently

ignoring the occupation of the other levels. The self-consistent field method uses the

Fermi function assuming that the energy of each level depends on the occupation of

the other levels. But this is only approximate. The exact method is to abandon the

Fermi function altogether and use Eq.(3.4.5) instead to calculate the probabilities of

the different multiparticle states.

One well-known example of this is the fact that localized donor or acceptor

levels (which have large charging energies U0) in semiconductors at equilibrium are

occupied according to a modified Fermi function ( ν: level degeneracy)

f
k TB

=
+ ( ) −( )

1
1 1/ exp ( ) /ν ε µ

(3.4.7)
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rather than the standard Fermi function (cf. Eq.(P.1.1)). We can easily derive this

relation for two spin degenerate levels ( ν = 2) if we assume that the charging energy

U0 is so large that the (11) state has zero probability. We can then write for the

remaining states

α Nα Eα Pα
0 0 0 0 1 / Z

0 1 1 ε (1 / Z)  exp [( ) / ]µ ε− k TB

1 0 1 ε (1 / Z)  exp [( ) / ]µ ε− k TB

so that Z k TB= + −1 2 exp [( ) / ]µ ε  and the average number of electrons is given

by

N N P P P
k T

k T
B

B
= = + = −

+ −
∑ α α
α

µ ε
µ ε01 10

2
1 2

exp [( ) / ]
exp [( ) / ]

=
+ −

1
1 1 2( / ) exp [( ) / ]ε µ k TB

in agreement with Eq.(3.4.7). This result known to every device engineer could thus

be viewed as a special case of the general result in Eq.(3.4.5).

Eq.(3.4.5), however, can only be used to treat equilibrium problems. Our

primary interest is in calculating the current under non-equilibrium conditions and

that is one reason we have emphasized the master equation approach based on

Eq.(3.4.2). For equilibrium problems, it gives the same answer. However, it also

helps to bring out an important conceptual point. One often hears concerns that the

law of equilibrium is a statistical one that can only be applied to large systems. But it

is apparent from the master equation approach that the law of equilibrium

(Eq.(3.4.5)) is not a property of the system. It is a property of the contacts or the

“reservoir”. The only assumptions we have made relate to the energy distribution

of the electrons that come in from the contacts. As long as the “reservoirs” are

simple, it does not matter how complicated or how small the “system” is.
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Current calculation: Getting back to non-equilibrium problems, once we have

solved the master equation for the individual probabilities, the source current can be

obtained from

I q R P1 1= − ±( ) →( )∑ α β α
β

(3.4.8)

where R1 represents the part of the total transition rate (R) associated with the

source contact. In our present problem this reduces to evaluating the expression

I f P f P P1 1 1 00 1 1 01 102 1= − −( ) +( )γ γ' '

+ +( ) − −( )2 11 1 01 10 1 1 11γ γf P P f P'' ''

Fig.3.4.3 shows the current-drain voltage (I-VD) characteristics calculated assuming

that the Laplace potential (Eq.(P.4.1)) is given by U q VL D= − /2 with VG  = 0. The

result is compared with a calculation based on the restricted SCF method described

in the last Section. The two approaches agree well for U eV0 0 1= . , but differ

appreciably for U eV0 0 25= .  showing evidence for Coulomb blockade or single-

electron charging. An unrestricted SCF method (not shown here) shows better

agreement with the exact result, but the degree of agreement depends on the choice

of parameters.

‘+’  if β has one more electron than α

‘-’  if β has one less electron than α
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(a) U eV0 0 25= .       (b) U eV0 0 1= .

Fig.3.4.3. Current vs, drain voltage VD  calculated assuming VG = 0 with

µ ε γ γ= = = = = = −0 0 2 0 025 0 005 21 2, . , . , . , /eV k T eV eV U qVB L D . The

two approaches (the self-consistent field and the multielectron master

equation) agree well for U eV0 0 1= . , but differ appreciably for

U eV0 0 25= .  showing evidence for Coulomb blockade or single-electron

charging.
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Exercises

E.3.1. Use the self-consistent field method (only the Hartree term) to calculate the

energy of the 1s level in a Helium atom. (a) Plot the nuclear potential UN(r) and the

self-consistent electronic potential Uscf (r) (cf. Fig.3.2.1a). (b) Plot the wavefunction

for the 1s level in Helium and compare with that for the 1s level in Hydrogen  (cf.

Fig.3.2.1b).

E.3.2. Use the self-consistent field method (only the Hartree term) to calculate the

energies of the 3s and 3p levels in a Silicon atom. (a) Plot the total potential

U(r)=Unuc(r)+Uscf (r) and compare with that for a Hydrogen atom (cf. Fig.3.2.2a).

(b) Plot the wavefunction for the 1s and 3p levels in Silicon and compare with that for

the 1s level in Hydrogen (cf. Fig.3.2.2b).

E.3.3. Plot the approximate binding energy for a Hydrogen molecule as a function

of the hydrogen-hydrogen bond length, making use of Eqs.(3.3.6) and (3.3.9) and

compare with Fig.3.3.4.


