Renewable Solar Energy: Has the Sun Finally Risen on Photovoltaics?

Mark R. Pinto Senior Vice President & Corporate CTO General Manager, Energy and Environmental Solutions

Purdue University February 20, 2009

think it. apply it.

APPLIED MATERIALS.

Applied Materials Overview

- The global leader in Nanomanufacturing Technology[™] solutions for the electronics industry
 - Ranked #1 in each of: semiconductor, flat panel display and solar equipment
- Fiscal year 2008 annual revenue ~ US\$8B
- Strong commitment to R&D: last 5 years ~ US\$1B per year
- Worldwide employees ~ 14,000
 - Global development in US, Europe, Israel, India, China, Russia
 - Manufacturing locations in US, Europe, Israel, Taiwan

SOLAR/PV BACKGROUND

SOLAR/PV BACKGROUND

Solar Energy: Abundant, Clean and Secure

The Sun provides every day 10.000 times the energy needed on the planet **F**

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that." – Thomas Edison, 1931.

World Electricity Production Forecast (2000 – 2040)

Photoelectric Effect to First Si PV Panels

 "Great benefits for telephone users and for all mankind will come from this forward step in harnessing the limitless power of the sun."
 Bell Telephone Laboratories, 1954.

First PV Driver: Off Grid Applications

P

The Second Energy Crisis and Next 20 Years

 "I will soon submit legislation to Congress calling for the creation of this Nation's first solar bank, which will help us achieve the crucial goal of 20 percent of our energy coming from solar power by the year 2000." – Jimmy Carter, 1979

White House West Wing - 1984

White House West Wing - 1992

 "The administration has significantly reoriented the country's approach to energy matters in the past 2 years." – Ronald Reagan, 1983

The Problem was the Economics...

q

Sources: NREL, DOE

PV ECONOMICS

Key PV Growth Market Segments

Residential

Today's Installed Base 5.4 GW

Market Drivers

High utility bills
Availability of incentives
Green choice

Commercial Rooftop

Utility Scale

Today's Installed Base 4.2 GW

Market Drivers

High utility bills
 Unpredictable cost
 Under-utilized urban space

Today's Installed Base 5.4 GW

Market Drivers

Solar economics
Favorable tax policy
Unpredictable fuel and carbon costs

Total new PV installations in 2008 ~4.1 GW

Source: Navigant 2007, 2008, Marketbuzz 2008

Components of PV Cost

- Materials cost
- Process cost
- Module efficiency

- Module efficiency
- Module size
- Module weight
- Labor cost
- Site costs

Learning Curves: VLSI and Moore's Law

q

1968 1973 1978 1983 1988 1993 1998 2003 2008

(Source: G. Moore, ISSCC 2003)

Solar Learning Curve: Module Cost/Watt

(U

Annual Exposure to Solar Radiation

P

 An insolation of 6kWh/m²/day (dark orange) translates to 2,190 hours of peak electricity generation from a PV module

(NASA/SSE 2005)

"Carbon Tax"?

Tax of \$100/ton increases coal based electricity rate by \$0.07-0.09

Grid Parity: Entering a Zone of Inflection

External Use

Typical Summer Load Profile

Base load \$50-60/MWh

Source: Load - CAISO, System load Aug 14, 2008 Assumption: Solar - Solar generation: 15GWp (DC), 18% utilization

Typical Summer Load Profile

Generation costs increase with overall system load

Source: Load - CAISO, System load Aug 14, 2008 Assumption: Solar - Solar generation: 15GWp (DC), 18% utilization

Typical Summer Load Profile

Solar can serve >30% of peak generation needs

Source: Load - CAISO, System load Aug 14, 2008 Assumption: Solar - Solar generation: 15GWp (DC), 18% utilization

Natural Gas Cost Projections Not Reliable Unplanned Costs Passed to Rate Payers

\$250M unanticipated fuel costs over 6 years per 500MW plant

(U)

Source: Actual, Forecast, 2001 Northwest Power and Conservation Council Assumption: Per 500MW peaker plant , running 5hrs/day

Large PV Peaking Opportunity

Today across all major OECD markets between \$3-4/Wp

Peak Generation Costs: Heat Rate 14; Running between 2-6hrs/day. Sizing reflects 30% of peak load generation. Solar excludes Mfg Tax Credit. Feed-in Tariff avg across Europe

PV TECHNOLOGY

¶.

Reducing Cost Per Function Through Technology

Reducing Cost Per Function Through Technology

Nanomanufacturing Technology Small features on a large production scale

Placing a nanotube?

More Than Nanofabrication – Repeatable, Robust, Reliable, Controllable, Safe and Cost Effective

Cost Per Function: Nanoelectronics

Scaling has been the primary cost driver for ICs – but not at an overcompensating increase in process cost/area

External Use

88 8ni

87.9nm

Flat Panel Display (LCD) Manufacturing

LCD Industry Revenue (\$B)

Production Cost per Area (k\$/m²)

> 20% Bigger (HD)TV Every Year for the Same Price

Cost Per Function: Displays & Arch Glass

Applied SmartWeb

Cost per area tends to be an equivalent or predominant factor in applications other than VLSI (U)

Components of PV Cost

 Materials cost
 Prc Cost / m²
 Mortule officiency Watt / m²

- Module efficiency
- Module size
- Module weight
- Labor cost
- Site costs

Solar Learning Curve: Module Cost/Watt

q

Key PV Technologies and Markets

Thin Film Preferred for large scale applications

P

Common focus to drive down cost per watt

Key PV Technologies and Markets

Thin Film Preferred for large scale applications q

Common focus to drive down cost per watt

Crystalline Solar Cells: Working Principle

Keys: Thin wafers + low process cost + conversion efficiency

Wafer Based PV Value Chain

Improve Material Efficiency: Thin Wafers

PV Wafering Roadmap

Data sources: Wafering: S. Schneeberger, April 2007 Polysilicon: A. Bjørseth, June 2007

Polysilicon Production (Mton)

Ultra-Thin Wafer Automation

P

17.01.2008 10:40:20 0100 -1647,2[ms] (1075 Hz) SpeedCam MiniVis

PV Fabrication Line Scale

	1980	2000	2005	2010	
Production Line Size (MWp)	0.5	5	50	100	
Lines Per Factory	2	3	4	10	
Total Factory Size (MWp)	1	15	200	1000	

1 GWp/year ~ 200X Si Area of Largest 300mm IC Fab

Processes Offering Scale + PV Efficiency

- Yield
- Thruput
- Uptime
- Thin wafers
- COC
- Efficiency
- Uniformity

Requires throughputs of >1,000 wafers per hour

Example of Thin Wafer Processing

Low Cost = Thin Silicon + High Uptime

Production Uniformity and Wafer Binning

P

High Efficiency Commercial Silicon PV Cells R.

All Back Contact (Sunpower)

- Back contact structure minimizes series resistance and recombination loss
- 22.4% cell efficiency achieved

Source: D. DeCeuster et.al., Eur. PVSEC-22, 2007

HIT Cell (Sanyo)

- Heterointerface creates a minority carrier mirror and improves thermal dependence
- 22.3% cell efficiency achieved

Source: Y. Tsunomura et.al., Intl. PVSEC-17, 2007

Cost / m²

Comes at Additional Process Complexity

Watt / m²

Beyond the ~31% Shockley-Queisser Limit

Maximum theoretical efficiencies:

2-jct. cells: 45.3%

3-jct. cells: 51.2%

4-jct. cells: 54.9%

Source: E. Weber

U

Lattice-Matched (LM)

Lattice-Mismatched or Metamorphic (MM)

Record cell efficiency achieved: 40.1% Typical cell contains > 20 layers Best W/gm – ideal for space applications

Source: R. King et.al., APL, 2007

Production Cost Limits Mainstream Use

Watt / m²

Cost / m²

Key PV Technologies and Markets

Crystalline Silicon Preferred for residential applications

Thin Film Preferred for large scale applications

Common focus to drive down cost per watt

Thin Film PV Value Chain

Basic Single Junction a-Si Solar Cell 6-6.5% Efficient with Production Costs ~\$1.00-1.25/Wp

Keys: Large substrates + low process cost + conversion efficiency

Large Area Processing = Lower Cost Per Area **Demonstrated in 15+ years of flat panel displays**

Large Thin Film PV Modules Leverage Low Cost per Area Processing and **Reduce Installation Costs**

48

SunFab[™] 5.7m² Thin Film PV Factory

¶.

SunFab[™] 5.7m² Thin Film PV Factory

P

SunFab[™] 5.7m² Thin Film PV Factory

P

Leveraging Scale: GW TF PV Module Factory 때

 Consumes 500 tons of glass per day

A GINNE A	I GINNIE I	R GINNE R	I SUNDIO DA
SUNTIO .	I SUNTI D	BINNIO TA	

 PV factory (111 acres) is larger than the Magic Kingdom at Disney World (107acres)

Watt / m²

- Produces 6,000 modules per day or enough to cover 7 ¹/₂ football fields per day
 - Equivalent area of 450,000300mm wafers per day

20% Cost/Wp reduction translates to 1+ year earlier parity

SunFab[™] 5.7m2 Thin Film Si Technology

High efficiency elements

- aSi/uSi tandem junction
- Optimized TCO contact
- Laser pattern size/alignment
- Reflective back contact
- Advanced ARCs
- Light steering layers
- Triple junction structures

Thermal Coefficient Favors Thin Film 1MWp c-Si and Thin Film Comparison

"Because of the superior performance, we already

Thin Film Compares Favorably at Higher Operating Temperature

High Efficiency Thin Film Silicon PV Cells

Tandem Junction with Interlayer

Interlayer optimizes light capture Initial cell efficiency of 15.0% achieved

Source: S. Fukuda et.al., Eur. PVSEC-21, 2006

Triple Junction on Foil

U

15.1% initial efficiency13.3% stable efficiency

Source: B. Yan et. al., 2006 IEEE WCPEC, pp. 1477-1480

Cost / m²

TF Silicon Has Paths to Higher Efficiency

Watt / m²

Components of PV Cost

- Materials cost
- Process cost
- Module efficiency

Module efficiency

INSTALLATION

COST

- Module size
- Module weight
- Labor cost
- Site costs

Downstream Advantages of Large Scale Modules

Utility Scale Solar Farms

- Larger 5.7m2 size:
 - Enables efficient mounting
 - Requires less cabling, rails, clips
- Results in >17% BOS savings
 - Equivalent to effect of > 2% efficiency improvement

- Larger 5.7m2 size:
 - Enables large panes without gluing
 - Avoids mismatch
 - Significantly reduces cost
- Becomes compelling to architects

Source: One of the Top 3 German Installers

PV MARKET OUTLOOK

P

World Electricity Production Forecast (2000 – 2040)

Large-Scale PV Opportunities in U.S.

Groundmounts 100 GWp ~ 15% of Nevada Nuclear Test Site

Commercial Rooftops 10 GWp ~ 15% of Walmart-size rooftops

Residential Rooftops 10 GWp ~ 3% of rooftops

25% U.S. RPS* Standard implies:

- ~250 GWp modules installed (based on 50% PV)
- ~40 GWp/year produced and installed ~ 1M jobs
- Requires ~33% CAGR in installations to achieve by 2025

*RPS = Renewable Portfolio Standard

WAL*MART

Applied Materials Sunnyvale Campus

¶.

Large PV Peaking Opportunity

Today across all major OECD markets between \$3-4/Wp

Peak Generation Costs: Heat Rate 14; Running between 2-6hrs/day. Sizing reflects 30% of peak load generation. Solar excludes Mfg Tax Credit. Feed-in Tariff avg across Europe

Annual PV Installations by Location

Sources: EPIA, China Renewable Energy Development Project, Deutsche Bank, Lehman Brothers, Solarbuzz

Wide Range of Market Growth Forecasts[†]

2010 Median Corresponds to ~ \$7B PV Equipment Market

† Forecasts before Sept/Oct 2008 global financial crisis

Summary and Conclusions

- This time PV is real
 - Incentives, carbon taxes, climate concerns are catalysts and not fundamental drivers
- Economic inflection points are within range
 - Passed parity for peak loading at many locations
- Nanomanufacturing technologies can be enabling
 - Process cost/area is key
 - Eventually could use a good battery

Time to Catch Some Rays...

Question 1

Question 2

Question 3

