MIF Generator for OOMMF

Jinyang Yu
Bucknell University

Oxsii

Difficulties - MIF

- o Provided examples are limited
- o not user friendly
 - MIF programming is hard
 - User-guideline (Child-class functions)

Implementation - model builder

- o Generate customized model without knowing MIF programming and complete understanding of the user guidelines.
- o Use rappture to create a Graphical User Interface.

Parameters

- o Dimensions of the model
- o Mesh
- o Energy functions
- o Evolver functions
- o Driver functions

Dimension

- o Geometric volumes of spaces
- o cube (a, b, c)
- o multiple cubes
- o ellipsoid

cube

o 6 numbers

o Projections of the cube along x, y, z direction.

multiple cubes

o Different shape, need not be disjoint, can up to

Ellipsoid

o define radii (a, b, c)

And more highly customized...

- o not built in function
- o can be designed within the tool
- o arrays, cylinders, etc

Mesh

- o define the discretization impressed on the simulation.
- o creates an axes parallel rectangular mesh across the entire space.
- o cell-based, with the center of the first cell one half step in from the minimal extremal point.

Anisotropy Energy

- O In physics, a ferromagnetic material is said to have magnetocrystalline anisotropy if it takes more energy to magnetize it in certain directions than in others.
- o 'Easy axis' = takes no energy to magnetize along that direction.
- O Uniaxial Anisotropy has one easy axis.
- o Cubic Anisotropy has two easy axis.
- O Inputs: easy axis and anisotropy constant.

$$E = KV \left(1 - \gamma^2\right) = KV \sin^2 \theta,$$

Exchange Energy

- Exchange interaction is a quantum mechanical effect between identical particles.
- o a wavefunction which describes the pair must be antisymmetric with respect to exchange of the electrons
- o the difference in energy between aligned and antialigned configurations is what is called the exchange energy

Exchange Energy

o Input: Exchange Constant

$$J_{ab} = \frac{1}{2}(E_{+} - E_{-}) = \frac{J_{ex} - CB^{2}}{1 - B^{4}}$$

o C:Columbus integral, B:overlap integral, Jex:exchange integral, Jab: exchange constant, E+/E-: eigenvalues for the system energy.

Demagnetization Energy

- o The demagnetizing field, is the magnetic field generated by the magnetization in a magnet.
- The total magnetic field = demagnetizing field + any other field caused by free or displacement currents.

Demag and Simple Demag

- o Demag function assumes the magnetization is constant in each cell, and computes the average demagnetization field.
- o Simple demag function does not use any of the of the symmetries inherent in the demagnetization kernel.

	Demag	Simple Demag
Source code	Complex	Simple
Performance	Ideal)	Poor (
Memory usage	Ideal)	Poor (

Zeeman Energy

- o Zeeman energy, or the external field energy, is the potential energy of a magnetised body in an external magnetic field.
- o Two choices, time-invariant Zeeman energy and object-invariant Zeeman energy.

Time-invariant Zeeman

- o Energy does not change with respect to time
- o Can be different with different objects

Object-invariant Zeeman

o Change with respect time (steps)

Object-invariant Zeeman

o Inputs: 7 values for each energy sweep (energy changes its direction).

o [1 0 0 -1 0 0 5]

Evolver and Drivers

- Evolvers are responsible for updating the magnetization configuration from one step to the next.
- o time evolvers Landau-Lifshitz-Gilbert dynamics
- o minimization evolvers, which locate local minima in the energy surface through direct minimization techniques.
- o Evolvers are controlled by drivers and must be matched with the appropriate driver type

Evolvers and Drivers

- The drivers hand a magnetization configuration to the evolvers with a request to advance the configuration by one step
- o The drivers determine when a simulation stage or run is complete

Evolvers & Drivers

	Evolvers	Drivers
Time Evolver	Euler Evolver	Time Driver
	Runge-Kutta Evolver	Time Driver
Min Evolver	CG Evolver	Min Driver

Evolvers

o Euler Evolver

 A simple first order forward Euler method with step size control on Landau-Lifshitz ODE

o Runge-Kutta Evolver

- Uses Runge-Kutta methods
- in most cases, it will greatly outperform the Euler Evolver

o CG Evolver

- in-development conjugate gradient minimizer
- Different alogrithm, compare

Drivers

- o evolvers are responsible for moving the simulation forward in individual steps
- o drivers coordinate the action of the evolver on the simulation as a whole, by grouping steps into tasks, stages and runs.
- o Takes two inputs:
 - initial configuration for the magnetization unit spins
 - intial direction for the magnet.
 - Pointwise Saturation Magnetization
 - The state when an increase in external H field does not increase the magnetization further.

References

- o https://en.wikipedia.org/wiki/Exchange_interaction
- o http://www.irm.umn.edu/hg2m/hg2m_c/hg2m_c.html
- o http://www.simotecthailand.co.th/en/knowledge8.html
- o http://math.nist.gov/oommf/doc/userguide12a5/userguide/Standard_0xs_Ext_Child_Clas.html#CG
- o https://en.wikipedia.org/wiki/Zeeman_energy
- o https://en.wikipedia.org/wiki/Anisotropy_energy
- o https://en.wikipedia.org/wiki/Magnetocrystalline_an isotropy